1.

Operating Systems & Networks

1.1 Introduction

vy b

27

v

Software that acts as an intermediary between computer hardware and user apps
Manages computer’s hardware resources (CPU, memory) and I/O devices (printers)
Enables user programs to execute without worrying about hardware specifications.
Three pillars of OS:

+ Virtualisation : Providing illusion of infinite memory and compute (CPU)

¢ Concurrency : Running multiple processes at a time

+ Persistence : Managing storage on disk (hardware) using file systems (software)

A program is nothing but code; and executing programs are called processes.

A process constitutes of a unique identifier (Process ID), memory image (static

(code and data) and dynamic (stack and heap)), CPU context (registers, instruction

pointer and program counter) and file descriptors (pointers to open files and

devices for memory 1/O).

A process can be in one of the following three states :

+ Blocked : Waiting for some I/O call (not ready to run)

¢ Ready : Waiting to be executed (ready to run)

¢ Running: Executing on processor (running)

Steps to create a process :

¢ Load program into memory (lazy load from disk)

¢ Runtime stack allocation (used for local variables,
function parameters and return arguments)

& Creation of program heap (used for dynamically
allocated data)

¢ Basic file setup (for STDIN, OUT, ERR)

¢ Initialise CPU registers (setting PC to the first instruction)

¢ Start the program

OS uses process list to store metadata about processes, called Process Control

Block (PCB). It includes Process ID (identifier), process state and address space of

the process (the register values).

init process is the ancestor of all processes.

Time Process 0 Process 1 ‘What's happening

Running Ready
Running Ready
Running Ready Process 0 initiates 1/0

Blocked Running F‘rocess1 0r isn :Iocked,
i

Blocked Running 1/0 of process 0 is

done.

Ready Running Process 1 is done

1
2
3
4
5 Blocked Running
6
7
8

Running - Process 0 is done

OS-provided function that allows user programs to interact with hardware.

Two modes of execution : User and Kernel (higher privilege such as 1/O)

¢ Uses Limited Direct Execution (LDE) as a low level mechanism to separate user
space from kernel space.

¢ Kernel performs system calls on behalf of the user process. Uses a separate
kernel stack and Interrupt Descriptor Table (IDT, aka Trap Table) to keep logs of
different kernel functions addresses.

TRAP Instruction : Special instruction to switch from user to kernel mode.

¢ CPU to higher privilege level, save context (old PC, registers) on Kernel Stack,
look up in IDT and jump to trap handler function in OS code.

¢ Once done, the OS calls a special return-from-trap instruction which returns
into the calling program, and back to user mode.

¢ Different from interrupt (which are signals sent to CPU due to unexpected
events, from either software or hardware), as it is a purely software generated
interrupt caused by system calls or exceptions.

- POSIX (Portable Operating Systems Interface) : Standard set of system calls that
an OS must implement to ensure portability. Programming languages abstract
systems calls. Eg: printf() in C internally invokes write system call.
- Some important system calls:
¢ fork() : Creates a new child process (with new PID), image copy of parent with
independent memory. The new process is added to the list of processes and
scheduled; and both start execution just after fork (with different return values).

¢ exec(): Used to load a different executable to the memory of a child process and
make it run a different program from the parent. We can also pass an
executable in some variations.

¢ wait() : Puts the parent in block state until the child terminates (options like
waitpid() also exist). It also collects exit status of the mustrative Flow
terminated child process, providing some visibility to
the parent process. wait allows the OS to reclaim the
resources of the child and prevent zombie
processes. init process adopts / reaps orphans.

¢ exit() : Terminates a process

1.2 Process Virtualisation

-> Multiple processes (even more than the number of processors) need to be executed
with each of them having the illusion of exclusive access to resources.
- Requires a switching mechanism (hardware) along with some policies (software)

1.2.1 Switching
- Context Switch : A low-level piece of assembly code that saves a register value from
executing process registers to kernel stack and restore values for the next process.
Essentially return-from-trap will go to the new process.
- For switching (kicking the currently executing process), we have two approaches:
¢ Cooperative / Non-Preemptive : OS trusts the processes to behave reasonably
(Give control back - yield() call).
e In case of a misbehaving process (eg: trying to do something they shouldn't),
trap instruction transfers to the OS which terminates the process.
e Problem : Reboot system, in cases of infinite execution of some process
+ Non-Cooperative / Preemptive : OS takes control with the help of interrupts.
e Every X milliseconds, raise an interrupt -> halt the process -> invoke interrupt
handler -> OS regains control (continue with the process or switch)

1.2.2 Scheduling

- Coming to scheduling policies, let’s first define some metrics :

* performance . Tturncrround = Tcompletion - Tarrival Gnd Tresponse = Tfirstrun_ Tarrival

+ Fairness: Jains fairness index (fairness in scheduling)

-> For 1/O jobs, the scheduler simply moves the job to blocked state. Once I/O is done,
an interrupt is raised and the OS moves the process back to ready state.

-> Some assumptions, which we'll start with : All jobs arrive at the same time, Each job
runs for the same amount of time, No I/O times for any job and Known run times.

- Various scheduling policies are as follows :

+ First Come First Serve Policy : Schedule the job that came first. As soon as it is
done, schedule the job that comes next. Good when all above assumptions are
held. But, if processes take different times, might lead to convoy effect (longest
process hoarding and not letting smaller processes finish fast).

¢ Shortest Job First (SJF) Policy : Assumes that all jobs come at the same time,
and prioritises ones which will finish fast.

¢ Shortest Time to Completion First (STCF) : Advanced SJF that does not assume
jobs come at same time and switches whenever a faster completing job enters.

¢ Round Robin Scheduling : Tries improving on the response time by running
jobs for time slices (Run job for a time slice » switch to next job » while true)
instead of individual job to completion. Time slice duration is also important, too

small wastes a lot of time on context switch; and too large leads to CPU hogging

¢ Multi Level Feedback Queues (MLFQ) : Assigns processes to different priority
gueues. If priority(A) > priority(B), A runs; if equal, they share CPU (round robin).

Priorities are adjusted based on behavior, promoting R

interactive jobs and demoting long-running CPU-heavy ones. . * o
This reduces turnaround and response times but may lead to _

starvation (solved via periodic priority boosts) and gamlng A .

(processes faking 1/O to stay high priority). e A =

e Determining periodic boost interval is hard (voo-doo constant). Too small

might not give proper share to interactive jobs; and too big might starve

long running jobs.

1.3 Networking

>
>
>

27

Client sends a request to the server, to which the server provides a response.
Protocol : Agreement between communicating parties on how to communicate
Software components in the OS that support (using system calls) network calls are
called protocol stack. Few hardware components:

¢ Host : Any device that send or receive traffic (can be client or server)

¢ IP Address : 32 bits, hierarchically assigned address used by host to send data

¢ Repeater : Allows regeneration of signals for long distance communication

¢ Hub : Multi-port repeaters (Key issue: everyone receives everyone's data)

+ Bridge : Sits b/w two hubs and is aware about hosts on either side (for routing)

¢ Switch : Multi-port bridge. Devices connected to a switch are part of 1 network

¢ Router : Facilitate communication between A 4
networks. Act as traffic control point facilitating |% %
security, filtering and redirection. -
e All communications to / from out of the .|:1= L]

network goes through the router.] I:l
Multiple types of networks exist : -— -_—

¢ Personal Area Network (PAN) : Very short range. eg bluetooth (master-slave)

¢ Local Area Network (LAN) : Private network operating within / nearby a single
building. Wireless LANs : 11 Mbps to 7 Gbps, wired LANs 100 Mbps to 40 Gbps.
One large Physical LAN can be divided into smaller logical LANs (Virtual LANSs)

¢ Metropolitan Area Network (MAN) : City wide networks

¢ Wide Area Network (WAN) : Span large geographical areas (country, continent,
etc). Higher latency and lower transmission speeds. Internet is a large WAN
(Dedicated WANSs for large organisations also exist, costly tho)

Networks are often organised as a stack of layers for abstraction. The set of layers

along with protocols forms the Network Architecture.

¢ Layer n of one machine communicates with layer n of another using a protocol.

¢ Between each pair of adjacent layer there is an interface, which defines the
primitive operations and services the lower layer makes available

Open System Interconnection (OSl), a conceptual framework used to understand

how network communication works through different layers.

Facilitate interoperability between different technologies

Comprised on 7 layers :

¢ Physical Layer (L1) : Transmission of raw bits through physical medium.
Comprises ethernet cables, optical fiber, coaxial cable, WiFi, hub, repeater, etc.

+ Data Link Layer (L2) : Interacts with the physical medium using MAC address (12
hex digits). Ensures hop-to-hop communication by creating reliable links
(error-correcting) between two directly connected (physically adjacent) nodes.
Comprises NIC, WiFi access cards and switches (move data).

¢ Network Layer (L3) : Manages end-to-end communication (routing through
different routes in a large network) using IP addressing (4 octets in IPv4).

Performs logical addressing (IP), path selection and packet forwarding.
Comprises routers, hosts, L3 switches, etc.

¢ Transport Layer (L4) : Service-to-service communication, ensuring that the
right process receives the (reliable, sequential and free from others) data.
Manages flow control and error correction. Uses ports (16-bit : 0-65535,
privileged: 0-1023, registered: 1024 - 49151) to send / receive data, unique to each
process. Comprises TCP and UDP.

¢ Session Layer (L5) : Manages (establish, maintain and terminate) connection
between different devices. Srospmdion et

¢ Presentation Layer (L6) : Data encryption &
compression to ensure that data is in format
that sender / receiver can understand. Segment

+ Application Layer (L7) : Provides support for
end applications to format and manage F,ame
data. In turn they make use of transport ‘°°°‘°°°°‘°°°°°‘°°°°
layer protocols. Comprises HTTP, DNS, SMTP, etc.

- We also have another model Internet Model (TCP/IP Model), which, unlike OSI, is

Application

an actual practically used model with 4 layers: rotons — T ol T

¢ Application Layer : Corresponds to application, ElEl NN
presentation and session Transport s

¢ Transport Layer : Transport layer of OSI -

¢ Internet Layer : Network layer of OSI - -

+ Network Layer : Physical and data link layers of OSI Link

-> Socket API : Simple abstraction, allowing applications to attach to the network at
different ports. Socket establishing calls (like connect, “™” e e
accept, etc) are blocking calls, ie, raise trap instruction. e
Application process is identified by tuple (IP, Protocol, Port) -
We have many types of links: — owe ‘
¢ Full-duplex : Bidirectional (both way at the same time)
¢ Half-duplex : Bidirectional (only one-way at a time)
¢ Simplex: Unidirectional B
-> Two step process:
¢ Multiplexing (sender) : Handle data from multiple sockets, add transport header
¢ Demultiplexing (receiver) : Use header info to deliver received segments to
correct socket
- Two types of protocols:
¢ User Datagram Protocol (UDP) : Opposite of TCP (like not connection oriented,
no flow control, retransmission, etc). Use case : VolP, DNS queries, streaming.
e UDP socket identified using destination IP and port. UDP segments with the
same destination port are redirected to the same socket.
e UDP segment header (32bit wide) comprises of source and destination port
(16bit each) in the first row, length (in bytes, including header) and checksum
(of UDP, header, payload and pseudo header from IP layer) in second row,
followed by the application data (payload).
¢ Transmission Control Protocol (TCP) : Connection oriented (establishing
connection before transmission), congestion control, reliable (order maintained,
error detection using acknowledgement and retransmission), higher overhead
(~20 bytes > ~8 bytes), and flow control (adjust transmission rate or message
limit based on network). Use case : mail, file transfer, HTTP/HTTPS
e TCP sockets are identified using source IP & port

v ¥

32 bits.

multiple TCP sockets, each communicating with
a different client.

e A TCP packet comprises of sequence number s

TCP Segment Header

Establishing Connection

(no. of sent bytes), acknowledgement number

(next expected byte seq number), window (no. “ NJ ’

of bytes the receiver can accept), A ... =00y w0 wwoon
(acknowledgement bit), R & S & F (connection =~ |« sz w300y umoson | 25k
management), C & E (congestion notification) i meia=s

and offset (length of the TCP header).

Using FYN bit Using RST Flags v‘
Graceful termination (Four-way) Ungraceful closing

ack = 401 sea = 1 [200 bytes] o
‘ Process 1.M1 Process .M ‘
L 1

ack = 201 seq = 401 [100 bytes]
sea = 1000 L0 bytes] ack = 101 seq = 1000 L00 bytes] ack = 101

___sea =101 ack = 1001

set FYN bit = 1 ack = 201 sea = 501 100 bytesd

ack = 601 sea = 201 [200 bytes]
a = 1101 LO b] ack = 101

Sea = 101 10 bytes] ack = 1001 Set FYN Bit= 4 set RST it = 1], sex fles] ook = 101 ack = 601 sea = 401 LI00 bytes]

sea = 1001 ack = 102 3:”;2:&;‘;:,::;“ . B ack = 501 sea = 601 LO bytes]

-

|.__sea =101 L0 bytes] ack = fi01

ack = 601 sea = 501 [200 bytes]

1.4 Memory Virtualisation

- Goal : lllusion that each process has its own private memory, while in reality, many
processes share the same memory. Transparency (user prog abstraction), efficiency
(min overhead) and protection (dedicated & isolated spaces for each process).

-> Address Space : Comprises program code (and static data), heap (dynamic memory
allocations) and stack (function calls during runtime). OS allocates memory and
tracks the location of the process.

+ Static/global variables are allocated in executable, stack memory (aka automatic
memory) allocations and deallocations are managed implicitly by compilers and
heap memory is handled explicitly by the programmer.

¢ brk and sbrk are a few memory management system calls that increase /
decrease the size of heap based on value. malloc(), free(), mmap(), calloc(), etc
are built upon these. Modern programming languages support these implicitly.

¢ CPU loads / stores to a virtual address (VA) but memory hardware needs to
access physical address (PA). This address translation is done by the Memory
Management Unit (MMU) - hardware.

-> To achieve virtualisation, we need some hardware support for execution and OS

mechanisms to control and manage. Three Key assumptions: ™77 @“
& Address space contiguously placed in physical memory R R |
¢ Size of address space is less than size of physical memory L S |
¢ Each address space is of exactly the same size e ~ |

1.4.1 Memory Management
-> Base and Bounds : Each process allocated contiguous memory (segment). Two

hardware registers in the MMU : base register and bounds/llmlts s et e |
register. Each program is written and compiled as if it is loaded at 0. *“[— 1

not n use

However, during execution, the OS decides the location in physical *—mwm
memory and sets the base register to that value. = I?SW
¢ Hardware calculates physical address as virtual address (process .. s

not in use

generated) + base; at runtime (dynamic relocation) »
¢ Limits : One base-bounds register pair per process, no large address space
support (any address access beyond bounds lead to interrupt and process
termination), lots of wasted space between stack and heap (internal
fragmentation), handling more memory demands than bound by a process.

- Segmentation (Generalised base-&-bound) : Instead of one base-bound |
per process, have it per logical segment (code, segment and heap), ——
allowing each segment to be placed in different parts of memory. The Heop
registers for storing these values are called segment registers. Lf:‘m
¢ Handles large and sparse address space well.) Free
¢ VA uses 14 bits, the first 2 identify the segment (00 : code, O1: heal, 11: o
stack, 10 : invalid) and the remaining 12 provide the offset. 6 =

e Some systems consider code and heap as one segment and use only one bit.
e Another method to identify the segment is using address formation

(program counter generated : code, stack pointer : stack, otherwise : heap)
¢ For address translation, get offset in VA for the specific segment and offset the
same from the PA segment’s base (note that stack grows up, unlike the other 2).
¢ Same issue of saving and restoring segment registers for each VA. Results in a
lot of little holes across the physical address (external fragmentation).
e These holes can be used with the help of memory tracking and algos like
best-fit, first-fit, buddy algorithm, etc.
e Another solution (when space larger than individual holes is needed) could
be to stop all processes and cluster the empty spaces (memory intensive).
We can only minimise, not avoid.
- Paging : Split the address space into fixed sized units, called pages. It's all about

mapping page in VA to page frame in PA. Vietual Addcess F”W",jl,"‘i‘
¢ The OS uses page tables, a per-process data LL salT;"}j“—{::j:::j;
structure, for address translation from virtual page = f———f— :%::::j
number to page frame number. Pges S
e Page tables can be huge, thus, stored in-memory. M

e Each entry is called a page table entry (PTE). Each PTE consists of a number
of bits (apart from VPN and PFN) :

Valid : unused pages are marked invalid, access to which results in trap

Protection : whether page can be read from, written to, executed from

Present : Indicates whether page is present in physical memory

Dirty : Whether page has been modified since brought into memory

Reference/Accessed : Whether page has been accessed (recently used!)

¢ Large pages can suffer from internal fragmentation, while small pages would
require extremely large lookup tables for address translation.

¢ Multiple processes can share a PFN.

¢ So,the whole address translation process follows the following steps :
e Identify VPN and offset (The bit length of offset is calculated using the size of

the page, remaining first bits become VPN)

e Index into the array of PTE as pointed by the page table base register (PTBR)
e Get PTE from memory, extract PFN using VPN
e Add offset to PFN to get to final address

¢ Address Space Identifier (ASID) : 8-bit field associated with each TLB entry (in
TLB table) to distinguish mappings for various processes during context switch
(one can flush with each switch also, but increased cache miss).

+ Translation Lookaside Buffer (TLB) : Caches VA to PA mappings, saving a lot of

costly memory accesses (plus parallel search by hardware). [et b r =

o O O O

O

e Goal: minimise cache misses. Locality matters: 1
o Spatial : nearby addresses [o | Lo
o Temporal : recently accessed addresses o | o]
e For TLB misses, CISC hardware walks the entire page .juw '
table in parallel to find the PTE, updates the TLB, and | »swsm | 6. Retey vetacton

retries the instruction. In contrast, RISC software ﬁ \

handles the trap by looking up the page table, updating @
the TLB via privileged instructions, and returning from the trap. Unlike
normal traps, the hardware re-executes the faulting mstructlon after aTLB

Faye

miss instead of moving to the next one. gl > S
¢ Multi-Level Page Tables : Tree-like page table structure Iﬁ/ : :
e If an entire page is full of invalid entries, don't allocate~
that page of the page table at all. Use page directory :
(simple list) to track. e

e Easier to manage memory (each portion of the page . ém
table fits neatly within a page) allowing the OS to Lﬁ— |
simply grab the next frge page. . g} \jﬂ

e But, during a TLB miss, this approach requires two - i

ey

wh:?,, |

s
bl location

loads from the memory (one for the directory and then for PTE itself).
e Not just limited to two levels, can have deeper tree structure (with directory
itself divided into multiple pages). Would require multiple memory access
¢ Inverted Page Tables : Instead of having one page table per process , have one
single page table for all the processes. And, instead of VPN to PFN mapping, we
have PFN to VPN (grows with physical memory size, instead of virtual AS)
e Searching for an entry would require looking up the entire table (linear bad,
efficient data structure needed)
¢ Swap Space : Dedicated space in memory which can be used to swap in and
out pages. Allows OS to give perception that process ===

has abundant memory. G x) mj

e Page Fault : Act of accessing a page that is not [z | [==| -
there in the physical memory (page table). == o E“:”‘“‘ =R
Happens when the present bit is O. | I R o

o Causes the hardware raises an exception and the OS services using Page
Fault Handler (piece of code), which searches through PTEs and gets the
address from the PFN. Possibility of context switch.

e Page Replacement : Process of swapping pages infout from/of memory.
Various policies to decide which page to evict (goal : maximise hits)

o Optimal : Replace the page that will be accessed farthest in future (ideal,
but not practical, to know the future).

o First-In-First-Out (FIFO) : Evict the page that came first

o Least Recently Used (LRU) : Replaces the least recently used page, works
well due to temporal locality. Hardware support needed to know the LRU
page, as software is not always involved. Use accessed or dirty bit (better)

o Random : Random page gets evicted

e If a page has been modified, it has to be pushed to disk. If not, the page is

clean and can simply be replaced - less overhead!

o Clock algorithm : Scans for unused and clean pages for replacement; and
then moves to evicting unused and dirty pages.

Cold-start / compulsory miss : First few missed access, due to empty cache

Belady’'s Anomaly : Increasing cache size doesn’t always mean improvement

Average Memory Access Time (AMAT) = (Hit% * T,,) + (Miss% * Tp)

Thrashing : When memory demands of processes exceed available physical

memory, leading to constant paging. Might require killing some processes

- Hybrid Approach : Instead of having one page table per process, we have it for
every segment (total 3 pages). Base register stores the start of the page table
corresponding to the segment and bound indicates the end of the page table.

¢ First two bits are used for signifying segment, followed by VPN and offset.

¢ Unallocated size between stack and heap no longer takes up space in the page
table, but variable page size now causes external fragmentation again.

1.5 Network Application Architecture

-> Two main types of network architecture :

+ Client-Server : Clients request services from the server (an always-on host, with
generally fixed IP/domain). Clients can always connect by sending packets to
the server IP address. Often a single server is not enough.

¢ Peer2Peer (P2P) : No dedicated always-on system, peers communicate among
each other (as client / server). Self-scalable and cost-effective, but unreliable,
insecure and performance issues.

-> Application layer protocols (eg: HTTP, SMTP, DNS, etc) define the types and syntax
of message exchanges (request/response), semantics of the fields and when & how
the process sends and responds to messages

- Hyper Text Transfer Protocol (HTTP) : Application layer protocol of the web, that
defines the structure of the messages.

¢ Two types of HTTP connections:

e Non-persistent (HTTP/1.0) : For every connection,
the client has to create a request (one page may
require multiple objects). This open connection
closes after each request response. -

e Persistent (HTTP/1.1) : One connection for all the = .l e s« st e
objects. The open connection is maintained.

¢ Two types of HTTP messages:

Request line G!:T /index. huu HTTP/1.1\r\n

; Intel Mac OS X
.0) Gecko/20100101 Firefox/80.0 \r\n
Header lines

e Request : Contains request line : Method (GET, x:o:g;}::odk:;glgatggr;:gitz\"
POST, PUT, HEAD, DELETE), URL (server address) seww = mmnsmo o
and Version (HTTP)

e Response : Contains status line: Version and Status e | s ot 57
code (200: ok, 301: object moved, 400: bad request, e
404: not found, 505: version not supported) daca data daca data data -

¢ HTTP server is stateless (every connection is treated separately), helps in

supporting simultaneous connections. F‘";‘

e But, websites may want to identify users | Mpevest
(keep session information). HTTP header ey ooy v . I

consists of information for cookies. Consists
of four components : Cookie header line in
HTTP response and request message, cookie
file kept in client's system and backend database on the server/website.
¢ We also have HTTP 2.0 (standardised in 2015. Enable request response
multiplexing over single TCP, request prioritisation , server push and HTTP
header fields compression) and even 3.0 (underway).

-> Web Caches : Don't need to access the main web server every time. Can have proxy
servers that satisfy requests on behalf of the main server. Browser can be controlled
to point towards a cache (mentioned in response header). [«. | (=) =)
¢ Reduces response time (often closer to client, reducing | ol et

Wittp request cookie: 1740

Witp response

HTTP reauest

access link delay) and reduces traffic on main server I D=
(improving performance). e |)

¢ The cache copy might get stale. Conditional GET (HTTP . | P
request) used to verify if an object is up-to-date. Tt e | S

- Content Distribution Networks (CDN) : Global network of servers / data centers
located around the world, to deliver web content to users quickly, reliably, and
securely. CDNs adopt two different server placement strategies:
¢ Enter Deep : Deploy server clusters in all access ISPs. High maintenance, higher

throughput and lower delays
¢ Bring Home : Building larger clusters at a smaller number of sites Lower
maintenance, lower throughput and higher delays. A | S

- Domain Name System (DNS) : Directory service of the “«w== «# .
internet that translates hostnames to IP addresses. -
o DNS servers are UNIX machines running Berkley Internet

Name Domain (BIND) software. Runs over UDP (port 53)
and prOVId,eS the fO”OV\{Ing services: . DNS: Dlstrlbu;:acﬁlemrchlcal Database
e Host aliasing : A single host can have multiple
aliases, resolve the names (get canonical names Rt o Scrvers (TR Z:};«»mf"lww
of host) T b e D .
e Mail Server Aliasing : Mail servers may also have - A
aliases. Provide canonical names of mail servers ettt O
e Load distribution : Perform distribution among Loca,‘%i,é"‘hﬂiwﬁ““m% SR
replicated ServerS EachISPcanhaveDNS’a’ri\diclri‘ents:ancoerecgtglhat
¢ DNS Servers store Resource Records (RR) and each #uwe o o5 = 77
RR is a tuple of form (name, value, type, ttl). Ttl / =
(time-to-live) is how long the record can be cached

) \ ;;} eoraste

Caching
- i 125 Loce) DS

NE

(in sec). Type can be one of the following :

e A:Name is hostname and value is IP address. (abc.com, 122.x.x.x, A, 3600)

e MX : name is domain and value is name of SMTP mail server. (x.com,
mail.x.com, MX, 3600)

e CNAME : name is alias of canonical name and value is canonical name.
(abc.com, x-abc.com, CNAME, 86400)

e NS : name is domain and value is hostname of authoritative DNS. (abc.com,
ns.host.com, NS, 86400)

1.6 Concurrency

- Often confused with parallelism, concurrency is about dealing with a lot of things

at
parallelism is doing a lot of things at once (dlfferent
processes runnlng in parallel across various CPU cores).

once (interleaving process execution) while @

concurrency, but none implies the other

- Threads : Lightweight copy of the process that executes mdependently Same
process threads share the same code, variables, address space (and page tables).
However, each thread has separate PC and function call stack management.

*

*

*

Different from fork()-ed processes, as parent and child do not share any memory
(essentially two different processes).

OS schedules threads that are ready, similar to scheduling processes. Thread
context (PC, registers) is saved into/restored from Thread Control Block (TCB).

e Every PCB can have one or more linked TCBs corresponding to threads
Kernel level processes have kernel level threads, which execute in kernel mode.

- Race Condition : When multiple threads executing concurrently and result
depends on order of execution (non-deterministic in nature), interrupts and switch

*

*

Critical Section : Code that is shared between the threads (leading to race
conditions). Generally, shared variables / data.

The solution is mutual exclusion, when one thread is accessing the critical
section, others should wait. We need some synchronization primitives
(hardware + software support) that ensure atomicity (similar to instruction level)
and also that every thread gets access (avoid starving).

1.6.1 Locks

- Simple variable holding the state of lock at any instant of time, which can be
Available (no threads hold the lock) or Acquired (Lock not available, one thread is
holding it and in CS). Can hold further info like which thread holds the lock, create a
gueue for threads to get locks, etc.

*

*

Owner : The thread that holds the lock. Owners need to free the lock for other
threads to acquire it and access the critical section of the code

Any lock should be mutually exclusive (prevent multiple threads from entering
CS at same time), fair (each thread gets a fair chance to enter into the CS) and
performance (not much overhead).

Can't just simply disable interrupts inside a lock. Too much privilege to any
random user program which can monopolise the processor. Won't even work on
a multi-processor system. Plus, code that masks / unmasks interrupts is
executed slowly (inefficient).

Simple software locks (variables like locked=True), would also fail, as the
conditions (if locked==False) can be checked for multiple threads, before
updating the actual value (instruction-level atomicity only); causing multiple
threads to gain access to CS.

Two types of waiting when the process is waiting for a lock release : Spin-Wait
(constant checking for the lock, consumes CPU cycles and resources) and Block
(yield/sleep the process and try again later, CPU can work on something else)
Multiple types of locks :

vl

e Test-And-Set : Simplest hardware primitive (atomic exchange instruction)
enabling testing of old values while setting the new value. Ensures only one
thread can hold the value, and the other keeps spinning. No fairness
guarantee; and while it works well on multi-CPU (esp. #threads = #CPU)
machines, significant overhead in single-CPU machines (esp. If the
lock-holding process gets interrupted)

e Compare-And-Swap : Another hardware primitive, which tests the address
value with expected, before updating the memory location.

e Load-Linked & Store-Conditional (LL/SC) : Similar to typical load operation
that fetches a value from memory and places it in a register. Stores
conditional success if no intermittent store to address has taken place. In
case of success, it updates ptr to value and returns 1 else returns O.

e Fetch-and-Add : Atomically increment a value while returning the old value
at a particular address. Used to build ticket lock, which uses a combination
of ticket and turn variables, instead of a single flag variable.

e Locks ensure that threads can get access to CS, but
threads might want to check for some conditions while §
executing. :

Using TestAndSet Lock

Inside the lock function the call will be:

r ~
| whilelComparedrdSuapitlock-Flag, O =20 |

nt
*ptr = new;
return ' H

}

Condition Variables : Explicit queues that the threads can put themselves on when
a state of condition is not as desired. Eg: lock is not available. When the condition is
met, thread can be woken up to continue.
¢ Allows signalling (passing info on condition) between threads
¢ Defined as pthread_cond_t ¢, where c is a condition variable with two ops:
e wait() : when thread wants to put itself to sleep (due to some condn)
e signal() : due to some change (in condn), the thread wants to wake up
Semaphores : Single structure which can act as both lock and condition variable.
¢ A simple value shared between threads. Starting with a value equal to the
number of resource instances available, it has two (atomic) routines:
e sem_wait() : Wait while value is -ve. Then, decrement one and get access
e sem_post(): After access done, increase the semaphore value
¢ Two types of semaphore: Sl b Rl
e Counting : Initial value set to as many resource [l
instances available, allowing as many threads to get
access to the CS at a time.)
e Binary: Counting semaphore with one resource instance (initial value is 1).
¢ Value of semaphore, when negative, equals to number of waiting threads

Note : Interchangeable use of threads and process. Hold for both.

Race Condition : When multiple threads access shared resources concurrently,
leading to unpredictable and undesirable outcomes due to the order of execution.
¢ Can be resolved using simple locks around the critical section

-> Deadlock : Situation where two or more processes are blocked indefinitely, each
waiting for a resource that the other holds. Creates circular dependency, preventing
any of the processes from making progress.
¢ Soln:Ensure no lock is held by a thread when it is waiting for some other lock.
¢ Often preferable to avoid rather than prevent. Concepts like Scheduling (If OS
knows which threads require locks at which point of time, it can schedule them
accordingly) and Bankers algorithm (practically not applicable).

¢ Many systems also employ deadlock detection (periodic cycle detections or if
OS freezes) and recovery (reboot the system) techniques

- Producer-Consumer/Bounded-Buffer Problem : Using only one lock for managing
various threads handling adding/taking to/from some buffer.
¢ Causes issues like race conditions, wrong thread being signalled, everyone

going to sleep, starvation, etc (due to spurious wakeup and ill-implementation).
¢ Must use two locks, one for producer threads and other for consumer threads.
Both lock access completion signals the other lock.

- Readers-Writers Problem : Multiple readers can access some resource, but only
one writer at a time. Writers would starve.
¢ Must add some sort of priority mechanism (queue), common to both.

- Dining Philosophers : There are N philosophers sitting around a table with a fork
between each. They think for some time and then try to eat, by acquiring the two
forks on either side. Represents threads trying to acquire shared resources.
¢ Might lead to deadlocks (when, for instance, all philosophers acquire the left

fork and then try to get the right one)

- Concurrency bugs can be broadly classified into two categories :
¢ Deadlock bugs : Threads keep waiting for each other. 4 conditions that should

together hold for a deadlock to occur :
e Mutual Exclusion : Thread claims exclusive control of a resource (eg: lock)
o Hardware primitives like Compare-and-swap (still chance of livelock)
e Hold-and-wait: Thread holds a resource and is waiting for another
o Can be avoided by using a master lock to hold all locks at once. Would
impact performance and concurrency gains
e No Preemption: Thread cannot be made to give up its resource (eg: the lock)
o Try locks before actually getting them. Possibility of livelock, if other
threads also follow the same order (can be resolved by adding delay)
e Circular Wait: There exists a cycle in the resource dependency graph
o Can be avoided by acquiring locks in a particular order
¢ Non-deadlock bugs : Incorrect results when threads execute. Mostly of type :
e Atomicity Violation : Critical section access by multiple threads
e Order Violation : Assuming another thread has already run

1.7 Networking (contd.)
1.7.1 Link Layer

- Subnets : Dividing a network into one or more (hierarchical) networks
¢ A subnet mask of 255.255.255.0 (or /24 in Classless Inter Domain Routing (CIDR)
Notation, which is the number of 1s in the address) implies a network containing
254 host addresses (only the last part can change).
-> The sender knows the receiver's IP, given the domain (through DNS), allowing L3
communication. For L2, we need a MAC address, though.
¢ Address Resolution Protocol (ARP) : A table/cache, with each IP node (router,
host), containing IP/MAC address mappings for some LAN nodes in the form <ip
address, MAC address, TTL> (generally, ttl ® 20mins).

e In case of same-network comms, the sender sends out an ARP query /
request (broadcasted to all network nodes), which includes the sender’s IP
and MAC address, target IP and MAC address (set as FF:FF:FF.FF.FF:FF)

e All the nodes store this (sender’s) broadcast mapping and the target host

replies with its MAC (not a broadcast) for the sender to store.
e When communicating across networks, default gateway (router connecting
to the outside of the network) IP (no broadcasting) is used (IP of 172.18.12.92).

1.7.2 Network Layer
-> Use IP address (logical address for unique identification within a network to
forward packets to the intended destinations.
¢ Needs to identify the best path, a dynamic process that changes based on
network conditions. Two sub-methods:
e Forwarding : Move packets from router’s input link to output link (next step)
e Routing: Determine route from source to destination (full route)
-> Network layer functions can be divided into two planes : —
¢ Data plane : Local per-router function, determines how
datagram arriving on router input port is forwarded to
router output port
¢ Control plane : Network wide logic, determines how data is
routed along end to end path from source to destination. Two approaches :
Traditional routing algorithms and Software defined networking (SDN)
-> Routers forward packets not explicitly addressed to them. They maintain a map of
all networks they know about (given the destination IP), called Routlng Table
¢ While ARP tables are populated on the fly, o o o
routing tables need to be ready apriori (routers ‘7
may drop packets if IP is not known). Three
methods for population : S
e Directly Connected : Networks to which the b jomsl e o] Lo gy

DC 10.1855x/24| Right 10.18.47.x/24| Right

router is directly attached to om_osertane osesss o] ez
e Static Routes : Routes manually provided by an administrator
e Dynamic routes : Routes automatically learned from other routers (various
protocols like OSPF, BGP, EIGRP, IS-IS are used by routers to inform about
the different networks they are connected to)

¢ But there are billions of destinations, not everything can be stored in each
router. Sending so many links with each other can itself bring down the
network. There are two parts to it: Internet (network of networks) and that each
network admin may want to control routing in its own network

- Autonomous Systems (AS) : Regions of aggregate HighlevelOverview e
routers (aka domains) 2 | v
¢ Total of around 70,000 AS's have been aSS|gned ') T T

(not all are active) 7M
¢ We need mechanisms for handling routing within -«
(Intra) and across (Inter) AS ‘

¢ All routers in AS must run the same intra-domain protocol. There is a gateway
outer at the edge of each AS which connects with the router in another AS.

e Gateways perform inter-domain as well as intra-domain within their network

e Intra-AS routing protocols : OSPF (Open Shortest Path First) Protocol (classic
dijkstra-based link state routing), RIP (Routing Information Protocol), EIGRP

e Inter-AS routing protocols : BGP (Broader Gateway protocol) based on path
vector protocol (considered as “glue that holds internet together”)

-> How does the host get an IP address? Hard-coded by sysadmin in the config file
(e.g., /etc/rc.config in UNIX) or dynamically generated by DHCP (Dynamic Host
Configuration Protocol) when joining from a server.
¢ DHCP runs over UDP. Client uses port 68 and server port listens on port 67.
¢ DHCPDISCOVER is broadcasted to all nodes, mcludmg the DHCP servers.

o Multiple servers offer IP addresses, the
client chooses one (first response) and =
broadcasts the acceptance. . : : 4 : |

¢ DHCP server can also give details like . & 0000 do sttt o st

1018 1F5/24 _ srei 10.719.89, dest: 255.255.255.0 67, adedrs 1071236

suten [ot 5
T R L O Y e
war

Host 6

i85
">
10.18.55./24 724

R, 1048.85.x/24

Destination | Interface

DieP

Server

address of DNS server, address of first hop router, network mask, etc.
¢ |ISPs get IP address blocks from ICANN(Internet Corporation for Assigned Names
and Numbers) and allocate IP addresses through 5 regional registries (RRs).
e There are not enough IPV4 addresses (Last chunk was allocated in 2011)
e |PVG, the next update, comprises of 128 bit address space
e |PV4 works for now due to NAT (Network Address Translation)

o All devices in the network share just one IPV4 address (public IP) as far as
the outside world is concerned.

o When devices from a network want to communicate with an outside
network, NAT modifies the source IP to its own public IP (to make it
appear that communication is from the larger public IP) using a
translation table (known as NAT or xlate-table).

o Various types (each offering a distinct translation method) : Static NAT,
Dynamic NAT, Port Address Translation or NAT Overload

1.8 Data Persistence
- Hardware (I/O device) and software (file system) needed to store data persistently

-> The flow of access is as follows : Wfa
+ Application performs read or write to a file ferorm 2/0 00 459 :

ommicates to 05
o e ks

¢ CPU communicates to the OS which invokes the File N =
System (FS). OS may check its cache if it's already there. | Fle Srten =

¢ FS prepares block level information to the disk =& A STk
controller. A Direct Memory Access (DMA) is set up. Disk Controller |©” sther e chu o bk corelr

s Disk controller performs the physical read or write — =TS
based on commands from DMA and file system —;;_

¢ Read: Disk » DMA ; Write : DMA - Disk
1.8.1 Hard Disk

-> Consists of 512 byte-sized blocks, each of which can be read or written

- Sectors are numbered from O to n-1 on disk with n sectors - Address space

- While many file systems read / write 4 KB at a time (or more), the singular 512-byte
block writes are guaranteed atomic (happens completely or not at all).

-> Torn write : power loss during the operation resulting in incomplete write.

- As for the geometry of the disk : skt

¢ Platter is the circular hard surface, which has 2 sides

¢ Each surface has thousands of tightly packed tracks in
the shape of concentric circles.

¢ Each track consists of multiple sectors, spread around. e
These sectors contain the encoded data.

o The arm, with the head at its end, moves across to allow it e e
read / write. Spindle connected to a motor, spins the platter around at a fixed
constant rate (7200 to 15000 RPM - ~6ms full rotation time) .

-> Three key phases in the process of disk access:

¢ Rotation : The head can read only when the desired block is
under it, and has to wait for the disk to rotate. This is known as
rotational delay.

¢ Seek : The disk contains multiple tracks and the head must ¢
move across tracks. This is a costly operation as it consists of multiple phases :
Acceleration, Coasting and Settling (settling alone can take upto 2ms)

+ Transfer : Finally, read / write from the surface. some Analysis

-> Some metrics are defined as: T T e
* TOtaI Tlme : TI/O = TSeek + TRotation + TTransfer 7::::,. [::: :2":5
+ Rate: I:QI/O =S izeTransfer / TI/O Random m:;:e' mam,zos 3::::
- By the time the head moves (from one track to L me osowes | oarues
another), the desired block in the track would T e

have rotated. To avoid this the beginning of the

There is large difference in performance between high-end performance drives
and low-end capacity drives

next track is slightly offset or skewed.
-> Modern disk drives also have cache (~8-16 MB), often referred to as track buffer. It
allows the driver to quickly respond to requests.
¢ When reading from a sector, cache all sectors in that track for faster subsequent
reads. For writes, there are two choices:

e Writeback (Immediate Reporting) : Acknowledges the write as completed as
soon as the data reaches cache memory. Gives the illusion of very fast driver,
but might cause issues, especially if order needs to be preserved

e Writethrough : Acknowledge after the write has been written to the disk.
Data is written to cache and disk together, causing performance issues.

- Coming to workload distribution, we have two types:
¢ Random Workload : Issues small (4 KB) reads to random locations on the disk.
Common in applications like DBMS.
¢ Sequential Workload : Reads a large number of sectors consecutively from disk.
Common in applications like backups, streaming, etc.
- Disk scheduler decides which request to schedule next to improve performance,
using the time estimates (based on delays) for each request.
¢ Shortest Seek Time First (SSTF) : Orders the queue of I/O requests by the nearest
track to the current position. Might cause starvation in case of a steady stream
from two adjacent tracks. Also requires geometry knowledge, which is not
known to the OS (One solution : Implement something like Nearest Block First).
¢ Elevator / SCAN : Simply move back and forth, servicing the requests in order. If

a request comes for a block on a track that has already been serviced in this

sweep (pass across the disk), it has to wait in a queue till the next sweep. Two

categories:

e F-SCAN : Freeze the queue to be serviced when doing a sweep. Avoids
starvation of far-away requests.

e C-SCAN (Circular scan) : Sweep from inner-to-outer and outer-to-inner, etc

¢ Shortest Positioning Time First : Considers rotation and seek delays to prioritise
faster starts (short position time). Depends if seek is faster / slower than rotation

1.8.2 Redundant Arrays of Inexpensive/Independent Disks

- Simply known as RAID, it consists of techniques to use multiple disks in concert to
build faster (parallel ops), bigger (larger memory capacity) and more reliable
(redundancy and backup options) disk systems. logial /0

- Externally (to the OS) it is like any normal group of memory .

.) o [FeereJDRAR)

blocks one can read/write to/from; but internally it is a very g g

complex structure consisting of multiple disks, own memory (BlGelEE)

(volatile and non-volatile for various buffer use and parity calculatlons) and

processors/microcontrollers to manage the whole system.

-> Any raid approach is evaluated based on the Capacity, Reliability (how many
failures/faults can the RAID system tolerate) and Performance (impact of different
workload on the latency, throughput and rate of 1/O). Two main things to evaluate :
¢ Single-request Latency : Latency of single I/O request to RAID
¢ Steady-state Throughput : Total bandwidth of concurrent requests

- We have the following main RAID levels (assume disk transfers at S MB/s under
sequential and R MB/s under random; and we have N B-block sized disks) :

+ Striping (RAID Level 0) : Spread the blocks across the disks in a round robin
fashion, without any redundancy. The number of consecutive blocks in a disk
are called chunks; and chunks in the same row together constitute a stripe.

e Too small of a chunk size will cause strips content across disks, increasing
parallel reads/writes (increasing the positioning delay also) and too big
reduces parallelism causing multiple concurrent requests to achieve high
throughput. No best size.

e Steady-state throughput equals N*S MB/s for sequential and N*R MB/s for
random workload. It is more like an upper bound

dato

¢ Mirroring (RAID Level 1) : Each entry has a copy placed in a different disk,
enabling it to handle single failures for a copy. Data is stripped across mirrored
pairs. The system can use any of the copies for read, but write has to happen to
both copies (may happen in parallel, similar time but higher due to the worst
case of the two). Capacity also becomes N/2 due to the copies.

e Each disk will only deliver half the peak bandwidth, (N/2)*S for sequential
reads (as the two disks divide the workload). And since each sequential write
requires writing in two different locations, the bandwidth during sequential
write is (N/2)*S (again half the peak). Random reads : N*R; and write : (N/2)*R.

¢ Parity (RAID Level 4) : For each stripe of data, a parity (generally XOR) block is
added. Allows for detection / handling of single failure across the system. Just
one disk is used for parity, leaving the whole (N-1)*B memory for actual data.

e During write, especially random write, we also need to update the parity.
Naive approach would be to iterate the whole stripe and calculate new parity
(additive approach). But, it's rather better to just flip the parity bits if the
updation bits are different from before (subtractive approach).

e Random reads, sequential reads and writes have a bandwidth of (N-1)*S,
assuming parity writes happen in parallel. But for random writes, it becomes
R/2 due to the parity disk becoming a bottleneck.

¢ Rotating Parity (RAID Level 5) : Similar to RAID4, but removes the parity
bottleneck, by spreading the parity bits across numerous disks.

e Similar sequential read and write performance as RAID4: (N-1)*S. Random
reads slightly better as it now utilises all disks. As for random write, we can
now parallelised due to distributed parities , providing a max bandwidth of

(N/4)*R MB/s (4 due to the 2 reads + 2writes). (i st (i spten|
- To summarise : S o a® @ o
¢ RAIDO : Performance, but no reliability o (] ﬂ @ B R
¢ RAID1: Random I/O performance and reliability fTeEE . EE

¢ RAID4 : Performance and steady-throughput, but (s sy o)
terrible random writes G e e o e
¢ RAIDS5 : Capacity, reliability and sequential 1/O ﬂ TR F 2] (3] e
1.8.3 Storage Virtualisation HEEEE BEEEE

-> Files: Linear array of bytes each of which can be read or written
¢ Each file has a unique low-level name (OS given), called inode number
(i-number) apart from the human-given name.
¢ OSis not concerned about the file types (image, code, etc); applications can care
¢ Everything in Unix is virtually a file
- Directory : A special kind of file (has its own inode number) containing mapping of
file names and their inode numbers for the various files and directories it contains.
¢ Each directory has two extra files : “.” for current dir and “.."” for parent dir.
¢ Unix Directory Tree : Files and directories arranged in a tree structure, with the
root directory referred to as “/". Uses a separator (generally “/") to name
subsequent directories. Everything is an abstraction by OS
- File System : Organization of files and directories on disk. Pure software
¢ It should ensure that data is stored persistently, and retrieved when requested.
Responsibility of making sense out of the Os and 1s stored in memory.
¢ It mainly has to provide three interfaces:
e Creation of files : Support creating files, allocate space
e Accessing files : Reading and writing files
e Deletion of files : Delete files and clear space
¢ It also stores some metadata about the files in a structure called inode
(referenced by the inode number). It includes data such as file type, file size, last
access, last modified, protection information, etc.
e Each inode needs to track disk blocks (not necessarily contiguous) of the file.
e Stores pointers to the disk block, called direct pointers. In case of large file

2
2

*

size (cant store all the direct pointers), use an indirect pointer which points
to a block containing more pointers (called indirect data block). The indirect
block is allocated from the data region.

e Each indirect pointer can further point to an indirect data block.

An OS can have more than one file system .
Lets try building a Very Simple File System (VSFS) : frED @]UU - IE -
e Data Structure : Some blocks (exposed by disk) F.... Dot Divsecasns osasires B ur B oo

need to be reserved for the metadata and rest for the actual data.

o Apart from the inode table in the metadata, we also store bitmaps to
denote if the corresponding block is free or not.

o Lastly, we have a super block, holding the entire organisation (which
blocks are what, type of file system, etc). During the mount, OS reads this
super block to initialise various parameters.

But how does a FS manage access to files?
e Kernel uses a set of data structures to track all open files :

o Global open file table : One entry for every open file (also stores sockets,
pipes, etc.), pointing to the in-memory inode of the file.

o Per-process open file table : Array of all the files that the process has
opened, indexed using the file descriptor (FD). Every process has three
files (stdin, stdout, err); with FD O, 1and 2 respectively; open by default.

o Per process file entry -> global file table entry -> inode of file.

e For opening afile:

o Traverse the path name by locating desired inode, using the i-number
and recursively iterating the dirs from the root to the desired file / dir.

o Finally, returns a file descriptor (FD) which points to in-memory inode.
The FD also acts like an offset value, allowing random access to the file.

o In the case of a new file, new inode and data blocks will be allocated
using bitmap and update directory entry.

o Open system call creates entries in both tables and returns the FD.

e Forreading afile:

o Read in the first data block of the file with help of inode. Update the last
accessed time in the inode and in-memory open file table for file offset,
file descriptor, etc. Repeat the process for reading each block of data

o Just deallocate (no disk I/O) the FD, once the file is closed.

e For writing to afile:

o Total of five I/O : Read and write to data bitmap, read and write the inode
and finally write to the actual block itself.

o Even more in the case of creation of a new file.

-> Free Space Management : Apart from bitmap for tracking free blocks, we can have
pointers in the super block pointing to the first free block which can then point to
the next free block and so on. This is referred to as the free list.

*

Sequence of data blocks are allocated contiguously for performance.
Pre-allocation policy is commonly used heuristic when allocating data blocks

- Caching / Buffering : Reading / Writing are expensive ops. (deeply located files can
get upto 100 1/Os). To minimise such effects, the system memory can be used to
cache important blocks (minimise overhead, also).

*

*

Modern systems employ dynamic partitioning of memory by integrating virtual
memory pages and FS pages into unified page cache.

Writes are a little tricky as at some point the disk has to be accessed to store the
data. Buffering (adding delay to perform batch 1/O) and then scheduling the
I/Os in a particular order for performance gain.

At the end its all about trade-off’s : Durability (DBs) vs Performance (PCs)

1.9 Miscellaneous

= |lna nutshell

%2E|||t%2Eac%2E|n&ld-%ZFQersonal%ZFawraI%5Fgugta%5Fresea rch%5Fiiit%5Fac%5
Fin%2FDocuments%2FAcads%2FUG2%2FSem3%2FOSN%2FLectures%2FOSN%5FL2

6%2Epdf&parentview=1

-> Some good resources (to understand what | cannot with mere text) :
¢ LL/SClock: @ Load Linked Store Conditional - Georgia Tech - HPCA: Part 5
¢ Semaphores: B Semaphores
¢ Concurrency Problems : Associated slides must (well-explained with example)

- A ‘good’ analogy to spin-waiting vs blocking, when waiting for a lock can be a
single restroom being shared by many people at an office. When it is occupied, one
might stand at the gate, constantly knocking until it is vacant (wasting time, not
being productive) or one can go back and check back in later after some time (no
time waste, but allow some other person, who comes later, to get access before).

- Some other terms used in the text, that might benefit with more details:

e Livelock : Concurrency issue where multiple processes/threads repeatedly
change their state in response to each other, but none of them make any
forward progress.

e Unlike deadlock, where processes are blocked, in livelock, the processes are
active but their actions continuously negate each other, preventing them
from completing their tasks.

¢ Banker’s Algorithm : A resource allocation and deadlock avoidance algorithm,
ensuring that a system remains in a "safe state" by simulating the allocation of
resources and checking if all processes can complete their execution without
entering a deadlock

¢ Clock Algorithm : Widely used page replacement algorithm that aims to mimic
the behavior of the LRU algorithm without much overhead associated with
tracking the least recently used page. Here's how it works :

e Pages in memory are organized in a circular list, like a clock face, with a
reference bit for each page initially set to O (when loaded). When a page in
memory is accessed, its R-bit isset to 1.

e When a page fault occurs and a page needs to be replaced, the clock hand
(@ pointer moving around the circular list), points to a page and checks its
R-bit.

o If R-bitis O, the page has not been accessed recently and is replaced with
the new page’s R-bit set to 1. The hand then moves to the next page.

o If R-bitis 1, the page has been accessed recently. Its R-bit is reset to 0 and
it gets a "second chance". And the hand advances to the next page.

e The advanced version makes use of the dirty bit, instead.

-> Some other random content:
¢ On a LAN, each network interface (like a network card in a computer) has a

globally unique MAC address and a locally unique IP address.

¢ MAC Address : 12 hex digits of form “00:1A:2B:3C:4D:5E. The first three identify
manufacturer (IEEE) and the next three are uniquely assigned by manufacturer.

¢ Two types of file references in a file system:

e Hard Links : Create another file that points to the same inode. Essentially
both files have the same underlying data, just different user-given names.

o User can only unlink files, the OS decides when to delete (when no more
files are linked to it).

o Limited as directory links are not possible, can't link to files in other disks
as inode is unique within a file system only).

e Soft / Symbolic Links : Create a file by itself with a different inode number. If
the main file is deleted, link points to an invalid entry: dangling reference

https://www.youtube.com/watch?v=fuHwmyZXnPA&ab_channel=Udacity
https://www.youtube.com/watch?v=XDIOC2EY5JE&ab_channel=NesoAcademy
https://iiithydresearch-my.sharepoint.com/?login_hint=aviral%2Egupta%40research%2Eiiit%2Eac%2Ein&id=%2Fpersonal%2Faviral%5Fgupta%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FAcads%2FUG2%2FSem3%2FOSN%2FLectures%2FOSN%5FL26%2Epdf&parentview=1
https://iiithydresearch-my.sharepoint.com/?login_hint=aviral%2Egupta%40research%2Eiiit%2Eac%2Ein&id=%2Fpersonal%2Faviral%5Fgupta%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FAcads%2FUG2%2FSem3%2FOSN%2FLectures%2FOSN%5FL26%2Epdf&parentview=1
https://iiithydresearch-my.sharepoint.com/?login_hint=aviral%2Egupta%40research%2Eiiit%2Eac%2Ein&id=%2Fpersonal%2Faviral%5Fgupta%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FAcads%2FUG2%2FSem3%2FOSN%2FLectures%2FOSN%5FL26%2Epdf&parentview=1
https://iiithydresearch-my.sharepoint.com/?login_hint=aviral%2Egupta%40research%2Eiiit%2Eac%2Ein&id=%2Fpersonal%2Faviral%5Fgupta%5Fresearch%5Fiiit%5Fac%5Fin%2FDocuments%2FAcads%2FUG2%2FSem3%2FOSN%2FLectures%2FOSN%5FL26%2Epdf&parentview=1

¢ Servers are often bind to “well-known-ports”, while clients are assigned
ephemeral ports by OS temporarily. Some common ports for various protocols :
FTP (file transfer) : 20, 21
SSH (remote login) : 22
SMTP (email) : 25
HTTP (world wide web) : 80
HTTPS (secured web) : 443
RTSP (media player control) : 543
¢ The Internet is just a bunch of routers. Internet vs internet :
e internet: distinct interconnected networks (network of networks)
e Internet: refers to the specific, globally recognized network we all use
¢ Earlier, network broadcasting used to happen on a single line (only one host
could transmit successfully at a time). Status allocation techniques were used

(every machine gets some time to transmit / receive) using round robin

scheduling. Packet collision threats (try again after random delay).

¢ Mounting a filesystem refers to making files and directories on a storage device,
like a hard drive, accessible to the operating system and users. A device can
have several storage devices with their separate file systems.

¢ Normal writes put the data into a buffer, and at some point it will be written to
persistent storage (using system calls like fsync). This is done for performance
enhancement.

e Reading and writing happens sequentially by default. Successive read/write
calls fetch from the offset that is being used. Calls like Iseek for random
accesses (by manipulating the offset).

¢ For TLB misses, CISC hardware walks the entire page table in parallel to find the

PTE, updates the TLB, and retries the instruction. In contrast, RISC software

handles the trap by looking up the page table, updating the TLB via privileged

instructions, and returning from the trap. Unlike normal traps, the hardware
re-executes the faulting instruction after a TLB miss instead of moving to the
next one.

¢ From a developer perspective, network architecture is fixed, while application
architecture is something that can be controlled.

¢ Transport layer provides logical communication between application processes
running on different hosts, with the help of protocol actions in the end systems

(sender breaks application messages into segments before passing to network

layer and receiver reassembles messages before passing to application layer)

¢ Every process assumes access to a block of memory from 0 to MAX (all in VAS).

¢ Hosts are any nodes that are not a router. They can discard packets due to
reasons like intended discard, errors, firewall rules, overflow/congestion, etc

¢ Coarse-grained vs Fine-grained memory management:
e Coarse-grained : Fewer large-sized segments. Lower overhead
e Fine-grained : More of smaller sized segments. Precise customisation

- Some calculation examples:

¢ Given a 32-bit address space with 4KB pages, find the size of page table size
assuming 100 processes :

e 4KB (2") page => 12 bits, leaving 20 bits for VPN (2%° mappings possible)

e Assuming 4bytes for each mapping => 4x2%° = 4MB per process per page

e For 100 processes, this gives us 400MB

1.X Glossary

r

1. Machine in a network gets an IP
using DHCP

: 2. Process mokes use of) (" N
F’Utm[HTTP, SMTP, etctsego 3. First does o DNS query to get
connect to process in abe.com _ IP address

/ \ J \ J

Levera.ﬁ:es UDP

) v

4, Make use of TCP/UDP to send
data to IP address and a port

5. IP oaddress is used to find the

1. Load address
[ey

!

2. Check the ntemal
CPU cache

App eg: HTTP

Segment

Packet

Frame

» Segments carry data across the network Yes \vcaw Witz

2o Extroct pw,sic&d
address

» Segments are carried within the packets, within frames

» Each layer adds a header (Above L4 will be replaced by its header)

2.9 Upolate TLB -l
I with translation

i-block 0 i-block 1 i-block 2 i-block 3 i-block o - 1
[T e - e — i
| o1 a;[s 16 ﬁg{w 325$f%5|af_91 e
| A . 4)5]6)7 po2Rpa23REIBEHA instruction
i S""Per : ""“O“P . olma\p ?[1105 1 [2e25 6|27 0] |yl | - -
| _ 1313 [15]a sz 5031 juafersf e o7 | [74] !

4KB KB 12KB 16KB 20kB 24KB 2%KB 22KB

« Using inode number, FS can locate inode, eg: inode number: 32
* Calculate offset into inode: 32 X (sizeof(inode)) = 32 * 256 = 8192 => 8 KB
+ Add offset with start address of inode = 12KB + 8KB = 20KB

Writing a File To Disk

route -> next router (B&P, OSPF) next node u

(6. Get the MAC address of the |

A

= . Check with MMU

2e. Check inside TLB

TLB Wit?

No

2e.2 Look up

Q.
Through the Page
table
)
—
2e.3 Get the
SoshkBa N0 |

\

Reading a File From Disk

sing ARP and send
dota

2 Get the physical
address, retum to
cPU

v " OOt Lot
bitmdg bt " N 3
bEflsap bisop aode ads eeds
erpote G | encd _
. v ,
-t - " T LA] remi i-gn.d
r
¥ el ress
7 write v sl
s write —,!; read
rend T
write F . —
erite resd O raad
write U rmad rend
it write write
et ramd Q) i y
ng

write

	1.1 Introduction
	1.2 Process Virtualisation
	1.3 Networking
	1.4 Memory Virtualisation
	1.5 Network Application Architecture
	1.6 Concurrency
	1.7 Networking (contd.)
	1.8 Data Persistence
	1.9 Miscellaneous
	1.X Glossary

