
1. Operating Systems & Networks

1.1 Introduction
1.1.1 Operating System
➔​ Software that acts as an intermediary between computer hardware and user apps
➔​ Manages computer’s hardware resources (CPU, memory) and I/O devices (printers)
➔​ Enables user programs to execute without worrying about hardware specifications.
➔​ Three pillars of OS :

◆​ Virtualisation : Providing illusion of infinite memory and compute (CPU)
◆​ Concurrency : Running multiple processes at a time
◆​ Persistence : Managing storage on disk (hardware) using file systems (software)

1.1.2 Process
➔​ A program is nothing but code; and executing programs are called processes.
➔​ A process constitutes of a unique identifier (Process ID), memory image (static

(code and data) and dynamic (stack and heap)), CPU context (registers, instruction
pointer and program counter) and file descriptors (pointers to open files and
devices for memory I/O).

➔​ A process can be in one of the following three states :
◆​ Blocked : Waiting for some I/O call (not ready to run)
◆​ Ready : Waiting to be executed (ready to run)
◆​ Running : Executing on processor (running)

➔​ Steps to create a process :
◆​ Load program into memory (lazy load from disk)
◆​ Runtime stack allocation (used for local variables,

function parameters and return arguments)
◆​ Creation of program heap (used for dynamically

allocated data)
◆​ Basic file setup (for STDIN, OUT, ERR)
◆​ Initialise CPU registers (setting PC to the first instruction)
◆​ Start the program

➔​ OS uses process list to store metadata about processes, called Process Control
Block (PCB). It includes Process ID (identifier), process state and address space of
the process (the register values).

➔​ init process is the ancestor of all processes.
1.1.3 System Calls
➔​ OS-provided function that allows user programs to interact with hardware.
➔​ Two modes of execution : User and Kernel (higher privilege such as I/O)

◆​ Uses Limited Direct Execution (LDE) as a low level mechanism to separate user
space from kernel space.

◆​ Kernel performs system calls on behalf of the user process. Uses a separate
kernel stack and Interrupt Descriptor Table (IDT, aka Trap Table) to keep logs of
different kernel functions addresses.

➔​ TRAP Instruction : Special instruction to switch from user to kernel mode.
◆​ CPU to higher privilege level, save context (old PC, registers) on Kernel Stack,

look up in IDT and jump to trap handler function in OS code.
◆​ Once done, the OS calls a special return-from-trap instruction which returns

into the calling program, and back to user mode.
◆​ Different from interrupt (which are signals sent to CPU due to unexpected

events, from either software or hardware), as it is a purely software generated
interrupt caused by system calls or exceptions.

➔​ POSIX (Portable Operating Systems Interface) : Standard set of system calls that
an OS must implement to ensure portability. Programming languages abstract
systems calls. Eg: printf() in C internally invokes write system call.

➔​ Some important system calls :
◆​ fork() : Creates a new child process (with new PID), image copy of parent with

independent memory. The new process is added to the list of processes and
scheduled; and both start execution just after fork (with different return values).

◆​ exec() : Used to load a different executable to the memory of a child process and
make it run a different program from the parent. We can also pass an
executable in some variations.

◆​ wait() : Puts the parent in block state until the child terminates (options like
waitpid() also exist). It also collects exit status of the
terminated child process, providing some visibility to
the parent process. wait allows the OS to reclaim the
resources of the child and prevent zombie
processes. init process adopts / reaps orphans.

◆​ exit() : Terminates a process

1.2 Process Virtualisation
➔​ Multiple processes (even more than the number of processors) need to be executed

with each of them having the illusion of exclusive access to resources.
➔​ Requires a switching mechanism (hardware) along with some policies (software)

1.2.1 Switching
➔​ Context Switch : A low-level piece of assembly code that saves a register value from

executing process registers to kernel stack and restore values for the next process.
Essentially return-from-trap will go to the new process.

➔​ For switching (kicking the currently executing process), we have two approaches :
◆​ Cooperative / Non-Preemptive : OS trusts the processes to behave reasonably

(Give control back - yield() call).
●​ In case of a misbehaving process (eg: trying to do something they shouldn’t),

trap instruction transfers to the OS which terminates the process.
●​ Problem : Reboot system, in cases of infinite execution of some process

◆​ Non-Cooperative / Preemptive : OS takes control with the help of interrupts.
●​ Every X milliseconds, raise an interrupt -> halt the process -> invoke interrupt

handler -> OS regains control (continue with the process or switch)
1.2.2 Scheduling
➔​ Coming to scheduling policies, let’s first define some metrics :

◆​ Performance : Tturnaround = Tcompletion − Tarrival and Tresponse = Tfirstrun− Tarrival
◆​ Fairness : Jains fairness index (fairness in scheduling)

➔​ For I/O jobs, the scheduler simply moves the job to blocked state. Once I/O is done,
an interrupt is raised and the OS moves the process back to ready state.

➔​ Some assumptions, which we’ll start with : All jobs arrive at the same time, Each job
runs for the same amount of time, No I/O times for any job and Known run times.

➔​ Various scheduling policies are as follows :
◆​ First Come First Serve Policy : Schedule the job that came first. As soon as it is

done, schedule the job that comes next. Good when all above assumptions are
held. But, if processes take different times, might lead to convoy effect (longest
process hoarding and not letting smaller processes finish fast).

◆​ Shortest Job First (SJF) Policy : Assumes that all jobs come at the same time,
and prioritises ones which will finish fast.

◆​ Shortest Time to Completion First (STCF) : Advanced SJF that does not assume
jobs come at same time and switches whenever a faster completing job enters.

◆​ Round Robin Scheduling : Tries improving on the response time by running
jobs for time slices (Run job for a time slice → switch to next job → while true)
instead of individual job to completion. Time slice duration is also important, too

small wastes a lot of time on context switch; and too large leads to CPU hogging
◆​ Multi Level Feedback Queues (MLFQ) : Assigns processes to different priority

queues. If priority(A) > priority(B), A runs; if equal, they share CPU (round robin).
Priorities are adjusted based on behavior, promoting
interactive jobs and demoting long-running CPU-heavy ones.
This reduces turnaround and response times but may lead to
starvation (solved via periodic priority boosts) and gaming
(processes faking I/O to stay high priority).
●​ Determining periodic boost interval is hard (voo-doo constant). Too small

might not give proper share to interactive jobs; and too big might starve
long running jobs.

1.3 Networking
➔​ Client sends a request to the server, to which the server provides a response.
➔​ Protocol : Agreement between communicating parties on how to communicate
➔​ Software components in the OS that support (using system calls) network calls are

called protocol stack. Few hardware components :
◆​ Host : Any device that send or receive traffic (can be client or server)
◆​ IP Address : 32 bits, hierarchically assigned address used by host to send data
◆​ Repeater : Allows regeneration of signals for long distance communication
◆​ Hub : Multi-port repeaters (Key issue: everyone receives everyone's data)
◆​ Bridge : Sits b/w two hubs and is aware about hosts on either side (for routing)
◆​ Switch : Multi-port bridge. Devices connected to a switch are part of 1 network
◆​ Router : Facilitate communication between

networks. Act as traffic control point facilitating
security, filtering and redirection.
●​ All communications to / from out of the

network goes through the router.
➔​ Multiple types of networks exist :

◆​ Personal Area Network (PAN) : Very short range. eg bluetooth (master-slave)
◆​ Local Area Network (LAN) : Private network operating within / nearby a single

building. Wireless LANs : 11 Mbps to 7 Gbps, wired LANs 100 Mbps to 40 Gbps.
One large Physical LAN can be divided into smaller logical LANs (Virtual LANs)

◆​ Metropolitan Area Network (MAN) : City wide networks
◆​ Wide Area Network (WAN) : Span large geographical areas (country, continent,

etc). Higher latency and lower transmission speeds. Internet is a large WAN
(Dedicated WANs for large organisations also exist, costly tho)

➔​ Networks are often organised as a stack of layers for abstraction. The set of layers
along with protocols forms the Network Architecture.
◆​ Layer n of one machine communicates with layer n of another using a protocol.
◆​ Between each pair of adjacent layer there is an interface, which defines the

primitive operations and services the lower layer makes available
1.3.1 The OSI Model
➔​ Open System Interconnection (OSI), a conceptual framework used to understand

how network communication works through different layers.
➔​ Facilitate interoperability between different technologies
➔​ Comprised on 7 layers :

◆​ Physical Layer (L1) : Transmission of raw bits through physical medium.
Comprises ethernet cables, optical fiber, coaxial cable, WiFi, hub, repeater, etc.

◆​ Data Link Layer (L2) : Interacts with the physical medium using MAC address (12
hex digits). Ensures hop-to-hop communication by creating reliable links
(error-correcting) between two directly connected (physically adjacent) nodes.
Comprises NIC, WiFi access cards and switches (move data).

◆​ Network Layer (L3) : Manages end-to-end communication (routing through
different routes in a large network) using IP addressing (4 octets in IPv4).

Performs logical addressing (IP), path selection and packet forwarding.
Comprises routers, hosts, L3 switches, etc.

◆​ Transport Layer (L4) : Service-to-service communication, ensuring that the
right process receives the (reliable, sequential and free from others) data.
Manages flow control and error correction. Uses ports (16-bit : 0-65535,
privileged: 0-1023, registered: 1024 - 49151) to send / receive data, unique to each
process. Comprises TCP and UDP.

◆​ Session Layer (L5) : Manages (establish, maintain and terminate) connection
between different devices.

◆​ Presentation Layer (L6) : Data encryption &
compression to ensure that data is in format
that sender / receiver can understand.

◆​ Application Layer (L7) : Provides support for
end applications to format and manage
data. In turn they make use of transport
layer protocols. Comprises HTTP, DNS, SMTP, etc.

➔​ We also have another model Internet Model (TCP/IP Model), which, unlike OSI, is
an actual practically used model with 4 layers :
◆​ Application Layer : Corresponds to application,

presentation and session
◆​ Transport Layer : Transport layer of OSI
◆​ Internet Layer : Network layer of OSI
◆​ Network Layer : Physical and data link layers of OSI

1.3.2 Transport Layer
➔​ Socket API : Simple abstraction, allowing applications to attach to the network at

different ports. Socket establishing calls (like connect,
accept, etc) are blocking calls, ie, raise trap instruction.

➔​ Application process is identified by tuple (IP, Protocol, Port)
➔​ We have many types of links :

◆​ Full-duplex : Bidirectional (both way at the same time)
◆​ Half-duplex : Bidirectional (only one-way at a time)
◆​ Simplex : Unidirectional

➔​ Two step process :
◆​ Multiplexing (sender) : Handle data from multiple sockets, add transport header
◆​ Demultiplexing (receiver) : Use header info to deliver received segments to

correct socket
➔​ Two types of protocols :

◆​ User Datagram Protocol (UDP) : Opposite of TCP (like not connection oriented,
no flow control, retransmission, etc). Use case : VoIP, DNS queries, streaming.
●​ UDP socket identified using destination IP and port. UDP segments with the

same destination port are redirected to the same socket.
●​ UDP segment header (32bit wide) comprises of source and destination port

(16bit each) in the first row, length (in bytes, including header) and checksum
(of UDP, header, payload and pseudo header from IP layer) in second row,
followed by the application data (payload).

◆​ Transmission Control Protocol (TCP) : Connection oriented (establishing
connection before transmission), congestion control, reliable (order maintained,
error detection using acknowledgement and retransmission), higher overhead
(~20 bytes > ~8 bytes), and flow control (adjust transmission rate or message
limit based on network). Use case : mail, file transfer, HTTP/HTTPS
●​ TCP sockets are identified using source IP & port

and destination IP port. A server can support
multiple TCP sockets, each communicating with
a different client.

●​ A TCP packet comprises of sequence number

(no. of sent bytes), acknowledgement number
(next expected byte seq number), window (no.
of bytes the receiver can accept), A
(acknowledgement bit), R & S & F (connection
management), C & E (congestion notification)
and offset (length of the TCP header).

1.4 Memory Virtualisation
➔​ Goal : Illusion that each process has its own private memory, while in reality, many

processes share the same memory. Transparency (user prog abstraction), efficiency
(min overhead) and protection (dedicated & isolated spaces for each process).

➔​ Address Space : Comprises program code (and static data), heap (dynamic memory
allocations) and stack (function calls during runtime). OS allocates memory and
tracks the location of the process.
◆​ Static/global variables are allocated in executable, stack memory (aka automatic

memory) allocations and deallocations are managed implicitly by compilers and
heap memory is handled explicitly by the programmer.

◆​ brk and sbrk are a few memory management system calls that increase /
decrease the size of heap based on value. malloc(), free(), mmap(), calloc(), etc
are built upon these. Modern programming languages support these implicitly.

◆​ CPU loads / stores to a virtual address (VA) but memory hardware needs to
access physical address (PA). This address translation is done by the Memory
Management Unit (MMU) - hardware.

➔​ To achieve virtualisation, we need some hardware support for execution and OS
mechanisms to control and manage. Three Key assumptions:
◆​ Address space contiguously placed in physical memory
◆​ Size of address space is less than size of physical memory
◆​ Each address space is of exactly the same size

1.4.1 Memory Management
➔​ Base and Bounds : Each process allocated contiguous memory (segment). Two

hardware registers in the MMU : base register and bounds/limits
register. Each program is written and compiled as if it is loaded at 0.
However, during execution, the OS decides the location in physical
memory and sets the base register to that value.​
◆​ Hardware calculates physical address as virtual address (process

generated) + base; at runtime (dynamic relocation)
◆​ Limits : One base-bounds register pair per process, no large address space

support (any address access beyond bounds lead to interrupt and process
termination), lots of wasted space between stack and heap (internal
fragmentation), handling more memory demands than bound by a process.

➔​ Segmentation (Generalised base-&-bound) : Instead of one base-bound
per process, have it per logical segment (code, segment and heap),
allowing each segment to be placed in different parts of memory. The
registers for storing these values are called segment registers.
◆​ Handles large and sparse address space well.
◆​ VA uses 14 bits, the first 2 identify the segment (00 : code, 01 : heal, 11 :

stack, 10 : invalid) and the remaining 12 provide the offset.
●​ Some systems consider code and heap as one segment and use only one bit.
●​ Another method to identify the segment is using address formation

(program counter generated : code, stack pointer : stack, otherwise : heap)
◆​ For address translation, get offset in VA for the specific segment and offset the

same from the PA segment’s base (note that stack grows up, unlike the other 2).
◆​ Same issue of saving and restoring segment registers for each VA. Results in a

lot of little holes across the physical address (external fragmentation).
●​ These holes can be used with the help of memory tracking and algos like

best-fit, first-fit, buddy algorithm, etc.
●​ Another solution (when space larger than individual holes is needed) could

be to stop all processes and cluster the empty spaces (memory intensive).
We can only minimise, not avoid.

➔​ Paging : Split the address space into fixed sized units, called pages. It's all about
mapping page in VA to page frame in PA.
◆​ The OS uses page tables, a per-process data

structure, for address translation from virtual page
number to page frame number.
●​ Page tables can be huge, thus, stored in-memory.
●​ Each entry is called a page table entry (PTE). Each PTE consists of a number

of bits (apart from VPN and PFN) :
○​ Valid : unused pages are marked invalid, access to which results in trap
○​ Protection : whether page can be read from, written to, executed from
○​ Present : Indicates whether page is present in physical memory
○​ Dirty : Whether page has been modified since brought into memory
○​ Reference/Accessed : Whether page has been accessed (recently used!)

◆​ Large pages can suffer from internal fragmentation, while small pages would
require extremely large lookup tables for address translation.

◆​ Multiple processes can share a PFN.
◆​ So, the whole address translation process follows the following steps :

●​ Identify VPN and offset (The bit length of offset is calculated using the size of
the page, remaining first bits become VPN)

●​ Index into the array of PTE as pointed by the page table base register (PTBR)
●​ Get PTE from memory, extract PFN using VPN
●​ Add offset to PFN to get to final address

◆​ Address Space Identifier (ASID) : 8-bit field associated with each TLB entry (in
TLB table) to distinguish mappings for various processes during context switch
(one can flush with each switch also, but increased cache miss).

◆​ Translation Lookaside Buffer (TLB) : Caches VA to PA mappings, saving a lot of
costly memory accesses (plus parallel search by hardware).
●​ Goal : minimise cache misses. Locality matters :

○​ Spatial : nearby addresses
○​ Temporal : recently accessed addresses

●​ For TLB misses, CISC hardware walks the entire page
table in parallel to find the PTE, updates the TLB, and
retries the instruction. In contrast, RISC software
handles the trap by looking up the page table, updating
the TLB via privileged instructions, and returning from the trap. Unlike
normal traps, the hardware re-executes the faulting instruction after a TLB
miss instead of moving to the next one.

◆​ Multi-Level Page Tables : Tree-like page table structure
●​ If an entire page is full of invalid entries, don’t allocate

that page of the page table at all. Use page directory
(simple list) to track.

●​ Easier to manage memory (each portion of the page
table fits neatly within a page) allowing the OS to
simply grab the next free page.

●​ But, during a TLB miss, this approach requires two

loads from the memory (one for the directory and then for PTE itself).
●​ Not just limited to two levels, can have deeper tree structure (with directory

itself divided into multiple pages). Would require multiple memory access
◆​ Inverted Page Tables : Instead of having one page table per process , have one

single page table for all the processes. And, instead of VPN to PFN mapping, we
have PFN to VPN (grows with physical memory size, instead of virtual AS)
●​ Searching for an entry would require looking up the entire table (linear bad,

efficient data structure needed)
◆​ Swap Space : Dedicated space in memory which can be used to swap in and

out pages. Allows OS to give perception that process
has abundant memory.
●​ Page Fault : Act of accessing a page that is not

there in the physical memory (page table).
Happens when the present bit is 0.
○​ Causes the hardware raises an exception and the OS services using Page

Fault Handler (piece of code), which searches through PTEs and gets the
address from the PFN. Possibility of context switch.

●​ Page Replacement : Process of swapping pages in/out from/of memory.
Various policies to decide which page to evict (goal : maximise hits)
○​ Optimal : Replace the page that will be accessed farthest in future (ideal,

but not practical, to know the future).
○​ First-In-First-Out (FIFO) : Evict the page that came first
○​ Least Recently Used (LRU) : Replaces the least recently used page, works

well due to temporal locality. Hardware support needed to know the LRU
page, as software is not always involved. Use accessed or dirty bit (better)

○​ Random : Random page gets evicted
●​ If a page has been modified, it has to be pushed to disk. If not, the page is

clean and can simply be replaced - less overhead!
○​ Clock algorithm : Scans for unused and clean pages for replacement; and

then moves to evicting unused and dirty pages.
●​ Cold-start / compulsory miss : First few missed access, due to empty cache
●​ Belady’s Anomaly : Increasing cache size doesn’t always mean improvement
●​ Average Memory Access Time (AMAT) = (Hit% * TM) + (Miss% * TD)
●​ Thrashing : When memory demands of processes exceed available physical

memory, leading to constant paging. Might require killing some processes
➔​ Hybrid Approach : Instead of having one page table per process, we have it for

every segment (total 3 pages). Base register stores the start of the page table
corresponding to the segment and bound indicates the end of the page table.
◆​ First two bits are used for signifying segment, followed by VPN and offset.
◆​ Unallocated size between stack and heap no longer takes up space in the page

table, but variable page size now causes external fragmentation again.

1.5 Network Application Architecture
➔​ Two main types of network architecture :

◆​ Client-Server : Clients request services from the server (an always-on host, with
generally fixed IP/domain). Clients can always connect by sending packets to
the server IP address. Often a single server is not enough.

◆​ Peer2Peer (P2P) : No dedicated always-on system, peers communicate among
each other (as client / server). Self-scalable and cost-effective, but unreliable,
insecure and performance issues.

➔​ Application layer protocols (eg: HTTP, SMTP, DNS, etc) define the types and syntax
of message exchanges (request/response), semantics of the fields and when & how
the process sends and responds to messages

➔​ Hyper Text Transfer Protocol (HTTP) : Application layer protocol of the web, that
defines the structure of the messages.

◆​ Two types of HTTP connections :
●​ Non-persistent (HTTP/1.0) : For every connection,

the client has to create a request (one page may
require multiple objects). This open connection
closes after each request response.

●​ Persistent (HTTP/1.1) : One connection for all the
objects. The open connection is maintained.

◆​ Two types of HTTP messages :
●​ Request : Contains request line : Method (GET,

POST, PUT, HEAD, DELETE), URL (server address)
and Version (HTTP)

●​ Response : Contains status line: Version and Status
code (200: ok, 301: object moved, 400: bad request,
404: not found, 505: version not supported)

◆​ HTTP server is stateless (every connection is treated separately), helps in
supporting simultaneous connections.
●​ But, websites may want to identify users

(keep session information). HTTP header
consists of information for cookies. Consists
of four components : Cookie header line in
HTTP response and request message, cookie
file kept in client's system and backend database on the server/website.

◆​ We also have HTTP 2.0 (standardised in 2015. Enable request response
multiplexing over single TCP, request prioritisation , server push and HTTP
header fields compression) and even 3.0 (underway).

➔​ Web Caches : Don’t need to access the main web server every time. Can have proxy
servers that satisfy requests on behalf of the main server. Browser can be controlled
to point towards a cache (mentioned in response header).
◆​ Reduces response time (often closer to client, reducing

access link delay) and reduces traffic on main server
(improving performance).

◆​ The cache copy might get stale. Conditional GET (HTTP
request) used to verify if an object is up-to-date.

➔​ Content Distribution Networks (CDN) : Global network of servers / data centers
located around the world, to deliver web content to users quickly, reliably, and
securely. CDNs adopt two different server placement strategies :
◆​ Enter Deep : Deploy server clusters in all access ISPs. High maintenance, higher

throughput and lower delays
◆​ Bring Home : Building larger clusters at a smaller number of sites. Lower

maintenance, lower throughput and higher delays.
➔​ Domain Name System (DNS) : Directory service of the

internet that translates hostnames to IP addresses.
◆​ DNS servers are UNIX machines running Berkley Internet

Name Domain (BIND) software. Runs over UDP (port 53)
and provides the following services :
●​ Host aliasing : A single host can have multiple

aliases, resolve the names (get canonical names
of host)

●​ Mail Server Aliasing : Mail servers may also have
aliases. Provide canonical names of mail servers

●​ Load distribution : Perform distribution among
replicated servers

◆​ DNS Servers store Resource Records (RR) and each
RR is a tuple of form (name, value, type, ttl). Ttl
(time-to-live) is how long the record can be cached

(in sec). Type can be one of the following :
●​ A : Name is hostname and value is IP address. (abc.com, 122.x.x.x, A, 3600)
●​ MX : name is domain and value is name of SMTP mail server. (x.com,

mail.x.com, MX, 3600)
●​ CNAME : name is alias of canonical name and value is canonical name.

(abc.com, x-abc.com, CNAME, 86400)
●​ NS : name is domain and value is hostname of authoritative DNS. (abc.com,

ns.host.com, NS, 86400)

1.6 Concurrency
➔​ Often confused with parallelism, concurrency is about dealing with a lot of things

at once (interleaving process execution) while
parallelism is doing a lot of things at once (different
processes running in parallel across various CPU cores).
◆​ Parallelism can be thought of as subclass of

concurrency, but none implies the other
➔​ Threads : Lightweight copy of the process that executes independently. Same

process threads share the same code, variables, address space (and page tables).
However, each thread has separate PC and function call stack management.
◆​ Different from fork()-ed processes, as parent and child do not share any memory

(essentially two different processes).
◆​ OS schedules threads that are ready, similar to scheduling processes. Thread

context (PC, registers) is saved into/restored from Thread Control Block (TCB).
●​ Every PCB can have one or more linked TCBs corresponding to threads

◆​ Kernel level processes have kernel level threads, which execute in kernel mode.
➔​ Race Condition : When multiple threads executing concurrently and result

depends on order of execution (non-deterministic in nature), interrupts and switch
◆​ Critical Section : Code that is shared between the threads (leading to race

conditions). Generally, shared variables / data.
◆​ The solution is mutual exclusion, when one thread is accessing the critical

section, others should wait. We need some synchronization primitives
(hardware + software support) that ensure atomicity (similar to instruction level)
and also that every thread gets access (avoid starving).

1.6.1 Locks
➔​ Simple variable holding the state of lock at any instant of time, which can be

Available (no threads hold the lock) or Acquired (Lock not available, one thread is
holding it and in CS). Can hold further info like which thread holds the lock, create a
queue for threads to get locks, etc.
◆​ Owner : The thread that holds the lock. Owners need to free the lock for other

threads to acquire it and access the critical section of the code.\
◆​ Any lock should be mutually exclusive (prevent multiple threads from entering

CS at same time), fair (each thread gets a fair chance to enter into the CS) and
performance (not much overhead).

◆​ Can't just simply disable interrupts inside a lock. Too much privilege to any
random user program which can monopolise the processor. Won’t even work on
a multi-processor system. Plus, code that masks / unmasks interrupts is
executed slowly (inefficient).

◆​ Simple software locks (variables like locked=True), would also fail, as the
conditions (if locked==False) can be checked for multiple threads, before
updating the actual value (instruction-level atomicity only); causing multiple
threads to gain access to CS.

◆​ Two types of waiting when the process is waiting for a lock release : Spin-Wait
(constant checking for the lock, consumes CPU cycles and resources) and Block
(yield/sleep the process and try again later, CPU can work on something else)

◆​ Multiple types of locks :

●​ Test-And-Set : Simplest hardware primitive (atomic exchange instruction)
enabling testing of old values while setting the new value. Ensures only one
thread can hold the value, and the other keeps spinning. No fairness
guarantee; and while it works well on multi-CPU (esp. #threads = #CPU)
machines, significant overhead in single-CPU machines (esp. If the
lock-holding process gets interrupted)

●​ Compare-And-Swap : Another hardware primitive, which tests the address
value with expected, before updating the memory location.

●​ Load-Linked & Store-Conditional (LL/SC) : Similar to typical load operation
that fetches a value from memory and places it in a register. Stores
conditional success if no intermittent store to address has taken place. In
case of success, it updates ptr to value and returns 1 else returns 0.

●​ Fetch-and-Add : Atomically increment a value while returning the old value
at a particular address. Used to build ticket lock, which uses a combination
of ticket and turn variables, instead of a single flag variable.

●​ Locks ensure that threads can get access to CS, but
threads might want to check for some conditions while
executing.

➔​ Condition Variables : Explicit queues that the threads can put themselves on when

a state of condition is not as desired. Eg: lock is not available. When the condition is
met, thread can be woken up to continue.
◆​ Allows signalling (passing info on condition) between threads
◆​ Defined as pthread_cond_t c, where c is a condition variable with two ops :

●​ wait() : when thread wants to put itself to sleep (due to some condn)
●​ signal() : due to some change (in condn), the thread wants to wake up

➔​ Semaphores : Single structure which can act as both lock and condition variable.
◆​ A simple value shared between threads. Starting with a value equal to the

number of resource instances available, it has two (atomic) routines :
●​ sem_wait() : Wait while value is -ve. Then, decrement one and get access
●​ sem_post() : After access done, increase the semaphore value

◆​ Two types of semaphore :
●​ Counting : Initial value set to as many resource

instances available, allowing as many threads to get
access to the CS at a time.

●​ Binary : Counting semaphore with one resource instance (initial value is 1).
◆​ Value of semaphore, when negative, equals to number of waiting threads

1.6.2 Concurrency Problems
➔​ Note : Interchangeable use of threads and process. Hold for both.
➔​ Race Condition : When multiple threads access shared resources concurrently,

leading to unpredictable and undesirable outcomes due to the order of execution.
◆​ Can be resolved using simple locks around the critical section

➔​ Deadlock : Situation where two or more processes are blocked indefinitely, each
waiting for a resource that the other holds. Creates circular dependency, preventing
any of the processes from making progress.
◆​ Soln : Ensure no lock is held by a thread when it is waiting for some other lock.
◆​ Often preferable to avoid rather than prevent. Concepts like Scheduling (If OS

knows which threads require locks at which point of time, it can schedule them
accordingly) and Bankers algorithm (practically not applicable).

◆​ Many systems also employ deadlock detection (periodic cycle detections or if
OS freezes) and recovery (reboot the system) techniques

➔​ Producer-Consumer / Bounded-Buffer Problem : Using only one lock for managing
various threads handling adding/taking to/from some buffer.
◆​ Causes issues like race conditions, wrong thread being signalled, everyone

going to sleep, starvation, etc (due to spurious wakeup and ill-implementation).
◆​ Must use two locks, one for producer threads and other for consumer threads.

Both lock access completion signals the other lock.
➔​ Readers-Writers Problem : Multiple readers can access some resource, but only

one writer at a time. Writers would starve.
◆​ Must add some sort of priority mechanism (queue), common to both.

➔​ Dining Philosophers : There are N philosophers sitting around a table with a fork
between each. They think for some time and then try to eat, by acquiring the two
forks on either side. Represents threads trying to acquire shared resources.
◆​ Might lead to deadlocks (when, for instance, all philosophers acquire the left

fork and then try to get the right one)
➔​ Concurrency bugs can be broadly classified into two categories :

◆​ Deadlock bugs : Threads keep waiting for each other. 4 conditions that should
together hold for a deadlock to occur :
●​ Mutual Exclusion : Thread claims exclusive control of a resource (eg: lock)

○​ Hardware primitives like Compare-and-swap (still chance of livelock)
●​ Hold-and-wait : Thread holds a resource and is waiting for another

○​ Can be avoided by using a master lock to hold all locks at once. Would
impact performance and concurrency gains

●​ No Preemption: Thread cannot be made to give up its resource (eg: the lock)
○​ Try locks before actually getting them. Possibility of livelock, if other

threads also follow the same order (can be resolved by adding delay)
●​ Circular Wait: There exists a cycle in the resource dependency graph

○​ Can be avoided by acquiring locks in a particular order
◆​ Non-deadlock bugs : Incorrect results when threads execute. Mostly of type :

●​ Atomicity Violation : Critical section access by multiple threads
●​ Order Violation : Assuming another thread has already run

1.7 Networking (contd.)
1.7.1 Link Layer
➔​ Subnets : Dividing a network into one or more (hierarchical) networks

◆​ A subnet mask of 255.255.255.0 (or /24 in Classless Inter Domain Routing (CIDR)
Notation, which is the number of 1s in the address) implies a network containing
254 host addresses (only the last part can change).

➔​ The sender knows the receiver's IP, given the domain (through DNS), allowing L3
communication. For L2, we need a MAC address, though.
◆​ Address Resolution Protocol (ARP) : A table/cache, with each IP node (router,

host), containing IP/MAC address mappings for some LAN nodes in the form <ip
address, MAC address, TTL> (generally, ttl ≈ 20mins).
●​ In case of same-network comms, the sender sends out an ARP query /

request (broadcasted to all network nodes), which includes the sender’s IP
and MAC address, target IP and MAC address (set as FF:FF:FF:FF:FF:FF)

●​ All the nodes store this (sender’s) broadcast mapping and the target host

replies with its MAC (not a broadcast) for the sender to store.
●​ When communicating across networks, default gateway (router connecting

to the outside of the network) IP (no broadcasting) is used (IP of 172.18.12.92).
1.7.2 Network Layer
➔​ Use IP address (logical address for unique identification within a network to

forward packets to the intended destinations.
◆​ Needs to identify the best path, a dynamic process that changes based on

network conditions. Two sub-methods :
●​ Forwarding : Move packets from router’s input link to output link (next step)
●​ Routing : Determine route from source to destination (full route)

➔​ Network layer functions can be divided into two planes :
◆​ Data plane : Local per-router function, determines how

datagram arriving on router input port is forwarded to
router output port

◆​ Control plane : Network wide logic, determines how data is
routed along end to end path from source to destination. Two approaches :
Traditional routing algorithms and Software defined networking (SDN)

➔​ Routers forward packets not explicitly addressed to them. They maintain a map of
all networks they know about (given the destination IP), called Routing Table.
◆​ While ARP tables are populated on the fly,

routing tables need to be ready apriori (routers
may drop packets if IP is not known). Three
methods for population :
●​ Directly Connected : Networks to which the

router is directly attached to
●​ Static Routes : Routes manually provided by an administrator
●​ Dynamic routes : Routes automatically learned from other routers (various

protocols like OSPF, BGP, EIGRP, IS-IS are used by routers to inform about
the different networks they are connected to)

◆​ But there are billions of destinations, not everything can be stored in each
router. Sending so many links with each other can itself bring down the
network. There are two parts to it: Internet (network of networks) and that each
network admin may want to control routing in its own network

➔​ Autonomous Systems (AS) : Regions of aggregate
routers (aka domains)
◆​ Total of around 70,000 AS’s have been assigned

(not all are active)
◆​ We need mechanisms for handling routing within

(Intra) and across (Inter) AS
◆​ All routers in AS must run the same intra-domain protocol. There is a gateway

outer at the edge of each AS which connects with the router in another AS.
●​ Gateways perform inter-domain as well as intra-domain within their network
●​ Intra-AS routing protocols : OSPF (Open Shortest Path First) Protocol (classic

dijkstra-based link state routing), RIP (Routing Information Protocol), EIGRP
●​ Inter-AS routing protocols : BGP (Broader Gateway protocol) based on path

vector protocol (considered as “glue that holds internet together”)
➔​ How does the host get an IP address? Hard-coded by sysadmin in the config file

(e.g., /etc/rc.config in UNIX) or dynamically generated by DHCP (Dynamic Host
Configuration Protocol) when joining from a server.
◆​ DHCP runs over UDP. Client uses port 68 and server port listens on port 67.
◆​ DHCPDISCOVER is broadcasted to all nodes, including the DHCP servers.
◆​ Multiple servers offer IP addresses, the

client chooses one (first response) and
broadcasts the acceptance.

◆​ DHCP server can also give details like

address of DNS server, address of first hop router, network mask, etc.
◆​ ISPs get IP address blocks from ICANN(Internet Corporation for Assigned Names

and Numbers) and allocate IP addresses through 5 regional registries (RRs).
●​ There are not enough IPV4 addresses (Last chunk was allocated in 2011)
●​ IPV6, the next update, comprises of 128 bit address space
●​ IPV4 works for now due to NAT (Network Address Translation)

○​ All devices in the network share just one IPV4 address (public IP) as far as
the outside world is concerned.

○​ When devices from a network want to communicate with an outside
network, NAT modifies the source IP to its own public IP (to make it
appear that communication is from the larger public IP) using a
translation table (known as NAT or xlate-table).

○​ Various types (each offering a distinct translation method) : Static NAT,
Dynamic NAT, Port Address Translation or NAT Overload

	1.1 Introduction
	1.2 Process Virtualisation
	1.3 Networking
	1.4 Memory Virtualisation
	1.5 Network Application Architecture
	1.6 Concurrency
	1.7 Networking (contd.)

