CS3.301 Operating Systems
and Networks

Virtualization - Process

Karthik Vaidhyanathan
https://karthikvaidhyanathan.com

‘.] ; ..) INTERNATIONAL INSTITUTE OF

INFORMATION TECHNOLOGY

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
o OSTEP Educator Materials, Remzi et al.
o OSTEP Book by Renzi et al.

e Modern Operating Systems, Tanenbaum et al.

Course Outline

What if processes
store data
across network

Can all run\
/ at the same time
share memory and
\ communicate? @

OS runs many
processes and

handles
communication

How this
is achieved

1119 1

[

Building concurrent processes

Getting the base right _ Building a network file system
that can communicate
Timeline
EEREEEEPRRPRRPRPPPRPY . This Course
. Process and Memory :
: Virtualization : Concurrency Persistence
: Networking intro : Addressing and Routing Network file Systems
..................... 3

Many processes run at the same time!

 How many processes are currently running in your machine?

O

OyuE Oe

2 ® &8

Y-

Activity Monitor
® All P
rocesses

WindowServer

PyCharm

Keynote

WhatsApp Helper (Renderer)
Google Chrome Helper (GPU)
Google Chrome Helper (Renderer)
Notion Helper (Renderer)
Microsoft PowerPoint

Dropbox

java

WhatsApp

GoodNotes

Google Chrome

Microsoft Word

Finder

Notion

Microsoft Teams Helper (Renderer)
WhatsApp Helper (GPU)

Acrobat Reader

mysqld

Google Chrome Helper (Renderer)
Code Helper (Renderer)

Microsoft Teams Helper (GPU)
Google Chrome Helper (Renderer)
Google Chrome Helper (Renderer)

Google Chrome Helper (Renderer)

@ v

Process Name

CPU Memory Energy Disk Network

Q

Mem...

2.87 GB

2.33GB

1.96 GB

1.05 GB
968.2 MB
916.6 MB
586.0 MB
564.4 MB
544.3 MB
522.0 MB
507.3 MB
473.0 MB
466.9 MB
452.7 MB
429.2 MB
420.9 MB
417.2 MB
396.6 MB
391.3 MB
384.1 MB
363.9 MB

16.00 GB
Memory Used: 13.37 GB
Cached Files: 2.58 GB
Swap Used: 8.42 GB

Physical Memory:

Threads Ports
22 8,065
79 619
10 1,988
23 291
30 619
23 484
18 205
73 54,149

151 743
83 320
38 1,051
17 722
44 3,004
45 4,345

9 1,697
32 534
22 295
11 213
37 376
40 73
24 2,283
App Memory:

Wired Memory:

Compressed:

PID

397
72518
43048

8954
1862
13979
7012
44978
55256
29886
8935
12385
1854
48352
596
6943
85080
8948
37565

506
78864

User

_windowserver
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
_mysql

karthikvaidhyat

2.55 GB
2.61 GB
7.68 GB

What is a Process?

* A Program is nothing but code
 Processes are running program

* There can be more than one process that are created per program

Compile and

Build Execute Runnin
Program Executable J
Process

Process Virtualization

 Each process feels that it has its own CPU

* Even in Single core machines - There can be multiple process that run at the
same time

 How is CPU handling this?

With limited CPU can we create an illusion that Endless CPU'’s are available?

OS achieves this using Virtualization of the CPU

Question: Can you of think of how such thing can be done?

6

Lets think! reed
4

™ ‘to_ execute .

/

Memory , N - ~
N | J |
EL\QS /,
7 B ~ OS
Processes
)
P1 [P3 j
_ . Y -~ o
wor t
P2 PF - J
_ game What does OS need to do to
j maoke such a virtualization
Each process is made to feel that l«appen?

it has its own CPU 7

Some Prerequisite

Video
Controller

Keyboard USB
controller Controller

HDD
Controller

AN

Bus

As we go more away from CPU, the more time it takes

Some Prerequisite - Computer Hardware

 CPU contains some registers

 [emporary registers

 Program Counter (PC), Stack pointer (SP), Data register, address register,..
 Some key registers

 Program counter - Points to the next instruction

» Stack pointer - Points to top of the stack in the memory

 Program Status word - Status of current state of CPU and program (condition
bits)

Some Prerequisites

How does CPU execute a program?

* [hree stage pipeline

Question: Do you believe that the current hardware structure is similar to this?

10

Some Prerequisite - Computer Hardware

Execute

Fetch

Holding Buffer ’

Execute

Superscalar CPU

How to make it at software level?

« We do need support from the hardware

e Some mechanism to switch

 Eg: Each process runs for a particular time and then we switch
* | ow-level mechanism (Context Switch)
 We also need some intelligence In the software
 Some algorithm that can intelligently decide ﬁ%
* Policies for switching —

» Basically we need - low level mechanisms and policies (CPU Scheduler)

12

What Constitutes a Process?

Lets make it clear - Process is nothing but running program!!

 The Characteristics that make up a process (State)
 What parts of the machine are important for execution?

 The most obvious component - Memory! Why??
* |nstructions lie in the memory, data (reads and writes) is in the memory
 Address space is part of the process

 What else does a running program need?

13

What Constitutes a Process?

Instruction
Pointer
Memory Machine State Registers
Persistent
Storage

* Memory - address space (Memory that the process can address)

Stack Pointer

* Instruction pointer, program counter - which instruction is executed
 Stack pointer- local variables, functions and return addresses

* Peristent storage - |/O information

What Constitutes a Process?

 Unique ldentifier (Process ID)

¢ Memory Image Memory Image of Process

 Code and data (static)
o Stack and Heap (Dynamic)
Data
« CPU Context: Registers

* Program Counter
* Current Operands

e Stack Pointer

* File Descriptors

* Pointers to open files and devices

15

Creation of a Process by OS

CPU Memory
 Load program into memory T
' static data
 |nitially program resides on the . heap
disk «
» OS does lazy loading . stack ;
Process
* Allocate runtime stack S S ———
| N 5
* Use for local variables D L oading:
. code | " Takes on-disk program
e Function parameters and return . static data F and reads it into the
arguments \P::,Zm/ R
Disk

16
Image from OS lecture by Youjip Won

Creation of a Process by OS

e Creation of Program heap cPU Memory
_ : code i
» Used for dynamically allocated data ' static data
| heap :
» malloc() and free() <
 Basic file setup ' stack 5
Process
« STDIN, OUT, ERR | | :
* Initialise CPU registers '
J \ ______ __/ l Loading:
: : : : d | " Takes on-disk program
* PC to the first instruction | stafc:icz Sata +---4----------= and reads it into the
o heap address space of
« Start the program N frogram process
Disk

1
! Image from OS lecture by Youjip Won

States of the Process

* At any point process can be in one of the following states
 Running - Its running on the processor
 Ready - Ready to run
 Blocked - Not ready to run, something else is running
* Any reason that you can think of?

* Think of I/0 call - Wait what does that mean?

18

States of the Process

Process State Transitions

Descheduled

Scheduled

/0 Initiate 1/0 done

Blocked

19

Lets look at an Example

Time Process 0 Process 1 What’s happening

1 Running Ready

2 Running Ready

3 Running Ready Process 0 initiates I/0O

4 Blocked Running Process 0 is blocked,
1 runs

5 Blocked Running

6 Blocked Running /0O of Process Ois
done

7 Ready Running Process 1 is done

8 Running - Process 0O is done

20

How to store Metadata? - Use data structures

* Need for some mechanism to store the state of the process
« Remember: OS is a software
* |t leverages data structures to store the information

 OS makes use of data structure called, process list -

» What to store inside each? - Process Control Block (PCB) Process List

* Process id? - Identification of the process
o State of the process - ready, running or blocked

* Address space of the process - the registers

21

Xv6 Operating System

Teaching OS developed by MIT - Replicate basic Unix

https://pdos.csail.mit.edu/6.828/2012/xv6.html

22

https://pdos.csail.mit.edu/6.828/2012/xv6.html

Process Structure in Xv6

// the information xv6 tracks about each process
// including its register context and state
struct proc {
char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack
// for this process
enum proc_state state; // Process state
int pid; // Process 1ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the
// current interrupt
} i

23

Process Structure in Xv6

// the registers xv6 will save and restore
// to stop and subsequently restart a process

struct context {

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register

int edi; // Destination index register

int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

24

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

25

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

