
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks

 Virtualization - Process

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• OSTEP Educator Materials, Remzi et al.
• OSTEP Book by Renzi et al.
• Modern Operating Systems, Tanenbaum et al.

2

Course Outline

3

Many processes run at the same time!

4

• How many processes are currently running in your machine?

What is a Process?

5

• A Program is nothing but code

• Processes are running program

• There can be more than one process that are created per program

Program Executable Running
Process

Compile and
Build Execute

• Each process feels that it has its own CPU

• Even in Single core machines - There can be multiple process that run at the
same time

• How is CPU handling this?

Question: Can you of think of how such thing can be done?

Process Virtualization

6

With limited CPU can we create an illusion that Endless CPU’s are available?

OS achieves this using Virtualization of the CPU

Some Prerequisite

7

CPU Memory Video
Controller

 USB
Controller

Keyboard
controller

 HDD
Controller

Bus

As we go more away from CPU, the more time it takes

Some Prerequisite - Computer Hardware

8

• CPU contains some registers

• Temporary registers

• Program Counter (PC), Stack pointer (SP), Data register, address register,..

• Some key registers

• Program counter - Points to the next instruction

• Stack pointer - Points to top of the stack in the memory

• Program Status word - Status of current state of CPU and program (condition
bits)

Some Prerequisites
How does CPU execute a program?

• Three stage pipeline

Question: Do you believe that the current hardware structure is similar to this?

9

Fetch Decode Execute

Some Prerequisite - Computer Hardware

10

Fetch Decode

Fetch Decode

Holding Buffer

Execute

Execute

Execute

Superscalar CPU

How to make it at software level?

11

• We do need support from the hardware

• Some mechanism to switch

• Eg: Each process runs for a particular time and then we switch

• Low-level mechanism (Context Switch)

• We also need some intelligence in the software

• Some algorithm that can intelligently decide

• Policies for switching

• Basically we need - low level mechanisms and policies (CPU Scheduler)

What Constitutes a Process?

12

Lets make it clear - Process is nothing but running program!!

• The Characteristics that make up a process (State)

• What parts of the machine are important for execution?

• The most obvious component - Memory! Why?

• Instructions lie in the memory, data (reads and writes) is in the memory

• Address space is part of the process

• What else does a running program need?

What Constitutes a Process?

13

• Memory - address space (Memory that the process can address)

• Instruction pointer or program counter - which instruction is executed

• Stack pointer- local variables, functions and return addresses

• Peristent storage - I/O information

Memory Registers

Persistent
Storage

Instruction
Pointer

Stack Pointer

Machine State

What Constitutes a Process?
• Unique Identifier (Process ID)

• Memory Image

• Code and data (static)

• Stack and Heap (Dynamic)

• CPU Context: Registers

• Program Counter

• Current Operands

• Stack Pointer

• File Descriptors

• Pointers to open files and devices
14

Code

Data

Stack

Heap

Memory Image of Process

Creation of a Process by OS

• Load program into memory

• Initially program resides on the
disk

• OS does lazy loading

• Allocate runtime stack

• Use for local variables

• Function parameters and return
arguments

15 Image from OS lecture by Youjip Won

Creation of a Process by OS

• Creation of Program heap

• Used for dynamically allocated data

• malloc() and free()

• Basic file setup

• STDIN, OUT, ERR

• Initialise CPU registers

• PC to the first instruction

• Start the program
16 Image from OS lecture by Youjip Won

States of the Process

• At any point process can be in one of the following states

• Running - Its running on the processor

• Ready - Ready to run

• Blocked - Not ready to run, something else is running

• Any reason that you can think of?

• Think of I/O call - Wait what does that mean?

17

States of the Process
Process State Transitions

18

Running Ready

Blocked

Descheduled

Scheduled

I/O Initiate I/O done

Lets look at an Example

19

Time Process 0 Process 1 What’s happening

1 Running Ready

2 Running Ready

3 Running Ready Process 0 initiates I/O

4 Blocked Running Process 0 is blocked,
1 runs

5 Blocked Running

6 Blocked Running I/O of process 0 is
done

7 Ready Running Process 1 is done

8 Running - Process 0 is done

How to store Metadata? - Use data structures

• Need for some mechanism to store the state of the process

• Remember: OS is a software

• It leverages data structures to store the information

• OS makes use of data structure called, process list

• What to store inside each? - Process Control Block (PCB)

• Process id? - Identification of the process

• State of the process - ready, running or blocked

• Address space of the process - the registers
20

P1 P2 P3 …

Process List

Xv6 Operating System
Teaching OS developed by MIT - Replicate basic Unix

21

https://pdos.csail.mit.edu/6.828/2012/xv6.html

https://pdos.csail.mit.edu/6.828/2012/xv6.html

Process Structure in Xv6

22

Process Structure in Xv6

23

What features should the OS Provide?
Consider that we should be able to run multiple processes!

• Create a process

• Double click and something just
runs

• Destroy a process

• Force quit, task manager -> end
process

• Wait

• Wait before running
24

• Suspend

• Keep the process in pause and
resume (eg: Downloading from
websites!)

• Status

• Can we get some status of the
process (task manager, system
monitor, top)

How to make it happen? - Heard of APIs?

• Application Programming Interface - What’s that?

• How does a travel website get information
about different flights and allows booking?

• What about payment services?

25

• API allows different programs/applications to
communicate with each other

• Provides a software interface for accomplishment

• Comes with detailed documentation

Image source: verge

Does OS Provide API? - System Calls!

• Way for user program to interact with the
OS

• OS provides some functions that can be
leveraged by user programs

• Available in the form of “System calls”

• Function call into OS code that runs at a
higher privilege level

• Think about access to hardware

• What if user wants to execute a process?
26

User Program

OS

Hardware

Process
Mgmt

File
Mgmt

Device
Mgmt

Memory
Mgmt

I/O
Mgmt

Commun
Mgmt

But you need Privileges!

27

• What if a user gives a instruction to delete all files?

• Should all the instructions be considered with equal
priority?

• When does the role of OS come in to the main picture?

• Think about reading a file or writing a file - How to
achieve it in C?

• What if you just wanted to multiply two numbers?

• What about the command to get list of available
directories?

• Two modes of execution - User mode and Kernel mode
Source: reddit

For Each OS = Rewrite Programs?

• POSIX API (Portable Operating Systems Interface)

• Standard set of System calls that an OS must implement

• Most modern OS’s are POSIX compliant

• Ensures portability

• Programming language libraries abstract systems calls

• printf() in C internally invokes write system call

• User programs usually do not worry about system calls

28

Some System Calls

29

File Management Process Management Communication

fd =open(file,..)

close(fd)

write(fd, …)

fork()

wait()

exec()

Pipe()

Shmget()

Mmap()

… … …

Protection

chmod()

Unmask()

chown()

…

System Calls for Process (Unix)

30

System Call Supports

fork() Creates a new child process

exec() Makes a process execute (runs an
executable)

wait() Causes a parent to block until child
terminates

exit() Terminates a process

• Many variants of the above calls exist

• init process is the ancestor of all processes

The Fork System Call

• A new process is created

• Parents image copy is made

• The new process is added to the list of processes and scheduled

• Parent and child start execution just after fork (with different return values)

• Parent and child execute and modify memory independently

31

The Wait API

• Wait() call blocks in parent until child terminates (options like waitpid() exists)

• Wait() also collects exit status of the terminated child process

• Provides some visibility to the parent process

• Without wait, if process terminates - Zombie process

• Exit status not collected by the parent

• Wait allows OS to reclaim the resources of the child - Prevent zombies

• What if Parent terminates before the child? - Think!

32

Remember: Init process, adopts orphans and reaps them

The Exec API

• When we perform a fork(), the parent and child execute the same code

• Do you see some problem there?

33

• exec() comes to the rescue

• Load a different executable to the memory

• Essence: Child can run a different program from parent

• In some variants of exec(), command lines to the executables can be passed!

34

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

