
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Process Virtualisation - Mechanisms

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• OSTEP Educator Materials, Remzi et al.
• OSTEP Book by Renzi et al.
• Modern Operating Systems, Tanenbaum et al.
• Other online sources which are duly cited

2

How does the Shell work? - Ever thought?

• Init process is started upon hardware
initialisation

• The init process spawns a shell like bash

• Shell does the following

• Read user command

• Forks a child and exec the command

• Wait for it to finish -> next command

3

Can you think how this works?
• > wc process_sample3.c > output.txt

4

• Shell will fork a child

• Rewires its standard output to text file (output.txt)

• Calls exec on the child (wc process_sample.c)

• The output will be redirected to output.txt

• Have you seen Unix pipes “|”

• Output of one goes as input to the other

Note: fork() and exec(), both are required

The Big Question - How to run multiple Processes?

5

Two Major Problems to be Solved

6

Process Virtualisation
Challenges

How to ensure process does
not do something not

expected?

How to stop process in
between and switch to

another one?

What if we allow process to do whatever it wants?

How can multiple processes run?

7

• Hardware Support

• Have some low level mechanisms to switch process

• What are the challenges?

• Performance Overhead?

• Software support

• Have some policies which decides what needs to be executed

• What are some of the challenges?

• Control overhead?

Normal Function call

• Function call translates to a jump instruction

• One instruction to another instruction

• A new stack frame is pushed to the stack,
Stack pointer is updated

• Old value of program counter (return value)
pushed to stack and PC is updated

• Stack frame contains return value, function
arguments, etc,

8

new_function()

Void new_function()

{……}

Stack

Old PC

Args

PC

1

2

SP

Is this enough?

9

OS Program

1. Create an entry in process list

2. Allocate memory for the program

3. Load program into memory

4. Setup stack with argc/argv

5. Clear registers

6. Execute call main()

7. Run main ()

8. Execute return from main()

9. Free memory of process

10. Remove process from process list

What if?

• The process wants to perform operations such as:

• Issuing I/O request to disk

• Access to memory or other system resources

• Can we let the process do whatever it wants?

Idea: Can we think of limiting the access of a process?

10

Challenge 1: Prevent Unintentional behaviour
Limit Direct Execution

11

https://tribuneindia.com

Only Kernel has access

User program can go until this point

Lets draw some Parallels

12

• As a visitor/user in the library - check sections, read books, magazines,..

• What about accessing the reference section and get access to some
treasured books?

Lets draw some Parallels

13

Lets draw some Parallels

14

Lets draw some Parallels

15

Restricted Operations

• Bring hardware into the picture

• Introduce a new processor mode

• User mode

• Code is restricted in what it can do

• Eg: no I/O request, Processor will raise an exception

• Kernel mode

• Code can do whatever it likes to do

• All privileged operations can be executed

16

Any challenges that you can think of?

Limited Direct Execution (LDE)

• Low level mechanism that separates the user space from kernel space

• Let the program directly run on the CPU

• Limits what process can do

• Offer privileged operations through well defined channels with the help of OS

At the end we need OS to be more than just a library!

17

How to move from User to Kernel?

• System calls - Kernel performs on behalf of user process

• Key pieces of functionality exposed by the kernel

• File system, process management, process communication, memory
allocation, etc

• Most OS provides few 100s of calls

• Early unix - 20 calls

• Some privileged hardware instruction support is needed - Cannot use normal
function call mechanism

18

System call works little differently

• Kernel does not trust the user stack - You don’t want to jump to random addresses

• Maintains a separate kernel stack (kernel mode)

• Kernel cannot rely on user provided address

• Uses a table - Interrupt Descriptor table (boot time) - Guidelines in our example

• IDT consists of addresses of different kernel functions to run on system calls or
other events

19

TRAP Instruction

• Special kind of instruction to switch mode from user to kernel

• Allows system to perform what it wants

• When a system call is made, the trap instruction allows to jump into kernel

• Raise the privilege mode to kernel mode

• Return-from-trap instruction allows switch back to user mode

• Return into the calling user program

• Normal routine is interrupted

20

More about TRAP instruction

• During TRAP instruction execution

• CPU to higher privilege level

• Switch to Kernel Stack

• Save context (old PC, registers) on Kernel Stack

• Look up in IDT (Trap Table) and jump to trap handler function in OS code

• Once in Kernel, privileged instructions can be performed

• Once done, OS calls a special return-from-trap instruction

• Returns into calling program, with back to User mode

21

The dual modes
User Mode and Kernel Mode

22Adapted from: OS02-Limited Direct Execution, Dongkun Shin, SKKU

The Dual Modes

23 Adapted from: OS02-Limited Direct Execution, Dongkun Shin, SKKU

• Interrupt

• Signal sent to the CPU due to unexpected event

• I/O Interrupt, clock Interrupt, Console Interrupt

• From either Software or Hardware interrupt

• Hardware may trigger an interrupt by signalling to the CPU

• Trap

• Software generated interrupt caused by

• Exception: Error from running program (divide by Zero)

• System call: Invoked by user program

Interrupt and Trap

24

LDE Protocol

25

OS @ boot (Kernel mode) Hardware

Initialize trap table
Remember address of..

Syscall handler..

OS @ run (Kernel mode) Hardware Program (User mode)
Create entry for process list

Allocate memory for program

Load program into memory

Setup user stack with arg

Fill kernel stack with reg/PC

return-from-trap Restore regs from kernel stack

Move to user mode

Jump to main

Run main()

..

System call

trap into OS

LDE Protocol

26

OS @ boot (Kernel mode) Hardware Program (User mode)

….

Save regs to kernel stack

Move to kernel mode

Jump to trap handler

Handle trap

Execute the system call

Return-from-trap

Restore regs from kernel stack

Move to user mode

Jump to PC after trap

…

Return from main()

trap (via exit())

Free memory of process

Remove process from process list

Problem 2: How to Switch between Process?
Lets draw some parallels

How can this situation be handled? - What can be the possibilities?

27

Cooperative Approach
Non-Preemptive
• Wait for system calls

• OS trusts the processes to behave reasonably (Give control back - Yield() call)

• Process transfer the control to the CPU by making a system call

• There can be misbehaving process (They may try to do something they shouldn’t)

• Divide by zero or attempting to access memory it shouldn’t

• Trap to OS -> OS will terminate the process

• Used in initial versions of Mac OS, Old Xerox alto system

• What if there is an infinite loop & process never terminates? - Reboot

28

Non-Cooperative Approach
Preemptive
• OS takes control

• The only way in cooperative approach to take control is reboot

• Without Hardware support, OS can’t do much!

• How can OS gain control?

29

• Simple solution - Use interrupts

• Timer interrupt was invented many years ago

• Every X milliseconds, raise an interrupt -> halt the process -> invoke interrupt
handler -> OS regains control

Non-Cooperative Approach
Preemptive - Timer Interrupt

• During boot sequence, OS starts the timer

• The time raises an interrupt every “X” milliseconds

• The timer interrupt gives OS the ability to run again on CPU

• Two decisions are possible - Component called Scheduler comes into picture

• Continue with current process after handling interrupt

• Switch to a different process => OS executes Context Switch

30

Context Switch

• A low-level piece of assembly code

• Save a few register values from executing
process registers to kernel stack

• General purpose registers

• Program counter

• Kernel stack pointer

• Restore values for the next process

• essentially retrun-from-trap will go to new

process

• Switch to Kernel stack for the next process
31

32

OS @ boot (Kernel mode) Hardware

Initialise trap table Remember address of..

Syscall handler..

Timer handler

Start interrupt timer Start timer

Interrupt CPU every “X” milliseconds

OS @ run (Kernel mode) Hardware Program (User mode)
Process A

….
Timer interrupt

Save regs(A) to k-stack(A)

Move to kernel mode

Jump to trap handler

LDE Protocol (Timer Interrupt)

33

LDE Protocol (Timer Interrupt)
OS @ boot (Kernel mode) Hardware Program (User mode)

Handle the trap

Call switch() routine

Save regs(A) to proc-struct(A)

Restore regs(B) from proc-struct(B)

Switch to k-stack(B)

Return-from-trap (into B)

…..

Restore regs(B) from k-stack(B)

Move to user mode

Jump to B’s PC

Process B

…

What if?

• During handling of one interrupt another interrupt occurs?

• Disable interrupt during interrupt processing

• Sophisticated locking mechanism to protect concurrent access to internal
data structures

34

How to decide which process to run next?

35

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

