
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Process Virtualisation - Policies (Scheduling)

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• OSTEP Educator Materials, Remzi et al.
• OSTEP Book by Renzi et al.
• Modern Operating Systems, Tanenbaum et al.
• Other online sources which are duly cited

2

Quick Recap

• Process is a running program

• They provide API with clear abstractions (System calls - fork(), exec(),..)

• Have states -> makes use of data structures to save values

• Gives a feeling that each process has its own CPU

• Hardware provides support - LDE

• OS switches between processes -> Context switch

3

How to decide which process to run on context switch?

4

Need for Policies (Scheduling)
Which process to schedule next on context switch?

5

Scheduler

Scheduling in the Library Scenario
What we need to know to ensure good policy?

• How many users want to go to the reference section?

• What’s the purpose? - What type of book they want to read?

• How much time are they expected to be in the reference section?

• How frequently are new users coming in?

Essentially it would be good to have these estimates to make a good policy!

6

What does it mean Concretely?

• For scheduling we need an idea of workload

• Assumptions about processes running in the system

• Number of processes

• RAM required

• CPU utilisation

• Any Input/Output, if yes what kind?

• ….

7

Lets start with some workload assumptions

Each process that is ready/needs to be executed and those executing - Job!

Some Assumptions:

1. Each job runs for same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (No I/O)

4. The run time or execution time of each job is known

8

How good is the policy?
Some Key Scheduling Metrics

• Metric is something we used to measure

• Performance metric: Turnaround time

• Time difference between job completion time and the arrival time

• Another metric is fairness - Jains fairness index: How fair is the scheduling?

• May not go hand in hand with performance

Tturnaround = Tcompletion − Tarrival

9

Scenario 1
All Assumptions in tact

• Imagine three jobs - Whatsapp, Skype and Teams update arriving at same
time

• Each of them take same time to complete

10

Process Arrival Time to Complete

Whatsapp (w) ~0 20

Skype (S) ~0 20

Teams (T) ~0 20

How to go about this?

First Come First Serve Policy

• The most basic algorithm a scheduler can implement

• Whoever comes first, give them the access

• Assume that they arrive at the same time - At time = 0

• For sake of simplicity W just arrived before T which just arrived before S

11

First Come First Serve (FCFS) Policy

12

Avg(Tturnaround) =
20 + 40 + 60

3
= 40

• Policy: Schedule the job came first

• As soon as it is done, schedule the
job that came next, continue

• There is an assumption here that
each job runs for the same time

• What if that’s not the case?

• Let us relax this assumption

What if each job no longer runs for same time?
Relaxing assumption 2

13

Avg(Tturnaround) =
100 + 120 + 140

3

= 120

FCFS is not that great
Convoy Effect

14

• Waiting time can go very high

• Convoy effect!

• Think about waiting in single line in grocery store where
you just have one item to purchase

What if?

• Every one said that they will need this much time for accessing the reference
section

• Librarian schedules based on the time they say
15

Shortest Job First (SJF) Policy

• Idea originating from operations research

• Policy: Run the shortest job first

16

Process Arrival Time to Complete

W 0 100

S 0 20

T 0 20

How to go about this?

Shortest Job First (SJF) Policy

17

• Assume that all jobs came at the same time

• Clearly whatsapp takes most amount of time

Avg(Tturnaround) =
20 + 40 + 140

3

= 66.3

Is that a bit too unrealistic? - In reality jobs can arrive at any time

Shortest Job First (SJF) Policy

18

• Whatsapp job arrives first

• Teams and Skype jobs arrives
around t = 20

Avg(Tturnaround) =
100 + 100 + 120

3

= 106.6

Even worst!! How to improve?

Shortest Time to Completion First (STCF)

• Adding preemption to Shortest Job First (SJF) Policy

• More like preemptive SJF

• Policy: Any time a new job enters the system,

• Check how much time is remaining for existing jobs

• Check the time that is required for the new one

• Execute the one that shall complete first

19

Shortest Time to Completion First (STCF)

20

Avg(Tturnaround) =
(140 − 0) + (40 − 20) + (60 − 20)

3
= 66.3

Can we improve this a bit more?

• What about the user side?

• What if this is an interactive process?

• Think about going to Amazon or Working with some desktop application

• Imagine a user sitting in front of the machine and executing the
command

• The machine identifies the nature of the job and schedules it

• What about response time?

21

Tresponse = Tfirstrun − Tarrival

Round Robin Scheduling

• Instead of running jobs for completion

• Can we run jobs for time intervals?

• Policy: Run jobs for a time slice -> switch to next job -> repeat till all are done!

• Key idea: Use the notion of time slice, considering timer interrupts

• Take into consideration the overhead of Context Switch

22

Round Robin Scheduling

• What if we used SJF for the below scenario?

23

Process Arrival Time to Complete

W 0 5

S 0 5

T 0 5

Avg(Tturnaround) =
5 + 10 + 15

3
= 10

Avg(Tresponse) =
0 + 5 + 10

3
= 5

Can we do better?

Round Robin Scheduling

• What if we do round robin with a time slice = 1 sec?

24

Avg(Tresponse) =
0 + 1 + 2

3
= 1

W is added in the 0th Second

T in the 1st second

S in the second second

Do we foresee some issue?

Round Robin Scheduling

• Time slice plays a critical role in response time part

• Too small time slice can result in an overhead - Too much Context Switch!

• RR is a good scheduling method

• Key thing is to find an optimal time slice

• Response time is the only metric

• What about turnaround?

25

Avg(Tturnaround) =
13 + 14 + 15

3
= 14!

Remember: Trade-off

• Turnaround time only cares about completion

• Fairness of scheduling does not come into the picture

• Processes may starve

• The key aspect is to consider trade-off’s

• Very important in system design

• Often among quality attributes

• Eg: security vs performance

26

Continuing on the Assumptions

• Jobs don’t perform I/O

• Run-time of each job is known

What can be done to consider I/O? Can we do RR Scheduling by considering I/O?

27

Incorporating I/O

• When there is a job doing I/O, Scheduler needs to be more decisive

• During I/O what will usually happen?

• The job will be blocked for I/O completion

• If I/O is hard disk dependant then it may require more time

• What can be an easy way out?

• When I/O is done - Interrupt is raised

• OS moves the process (Job) from blocked to ready state

28

Lets consider a scenario

• Assume two process: Microsoft Word
(autosave), your C program executing
some numerical computation (No I/O
access)

• Microsoft Word (M): autosaves
every 20 seconds => I/O access

• C program (C): No I/O access

29

Can we do better?

Shortest Time to Completion First (STCF)
Can we leverage STCF?

• Policy: CPU is used by one process while the other one uses the disk

• Each CPU burst can be treated of as separate job

• Better utilization of the processor

30

Do we miss something?

One more assumption to consider

31

We may not know the length or expected time of
completion of a job? — How to handle?

32

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

