
Karthik Vaidhyanathan 

CS3.301 Operating Systems 
and Networks
Process Virtualisation - Policies (Scheduling) and  
Process Communication (Intro to networks)

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com


Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various 
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• OSTEP Educator Materials, Remzi et al.
• OSTEP Book by Renzi et al. 
• Modern Operating Systems, Tanenbaum et al.
• Networking Fundamentals by Practical Networking (Youtube Channel)
• Other online sources which are duly cited

2



Can we improve this a bit more?

• What about the user side?


• What if this is an interactive process?


• Think about going to Amazon or Working with some desktop application


• Imagine a user sitting in front of the machine and executing the 
command


• The machine identifies the nature of the job and schedules it


• What about response time?
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Tresponse = Tfirstrun − Tarrival



Round Robin Scheduling

• Instead of running jobs for completion


• Can we run jobs for time intervals?


• Policy: Run jobs for a time slice -> switch to next job -> repeat till all are done!


• Key idea: Use the notion of time slice, considering timer interrupts


• Take into consideration the overhead of Context Switch
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Round Robin Scheduling

• What if we used SJF for the below scenario?
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Process Arrival Time to Complete

W 0 5

S 0 5

T 0 5

Avg(Tturnaround) =
5 + 10 + 15

3
= 10

Avg(Tresponse) =
0 + 5 + 10

3
= 5

Can we do better?



Round Robin Scheduling

• What if we do round robin with a time slice = 1 sec?

6

Avg(Tresponse) =
0 + 1 + 2

3
= 1

W is added in the 0th Second

T in the 1st second


S in the second second

Do we foresee some issue?



Round Robin Scheduling

• Time slice plays a critical role in response time part


• Too small time slice can result in an overhead - Too much Context Switch!


• RR is a good scheduling method


• Key thing is to find an optimal time slice


• Response time is the only metric


• What about turnaround? 
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Avg(Tturnaround) =
13 + 14 + 15

3
= 14!



Remember: Trade-off

• Turnaround time only cares about completion 

• Fairness of scheduling does not come into the picture - Given!


• Fairness here comes at the cost of turnaround time


• The key aspect is to consider trade-off’s


• Very important in system design


• Often among quality attributes


• Eg: security vs performance
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Continuing on the Assumptions 

• Jobs don’t perform I/O


• Run-time of each job is known


What can be done to consider I/O? Can we do RR Scheduling  

by considering I/O?
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Incorporating I/O

• When there is a job doing I/O, Scheduler needs to be more decisive


• During I/O what will usually happen?


• The job will be blocked for I/O completion


• If I/O is hard disk dependant then it may require more time


• What can be an easy way out?


• When I/O is done - Interrupt is raised


• OS moves the process (Job) from blocked to ready state
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Lets consider a scenario

• Assume two process: Microsoft Word 
(autosave), your C program executing 
some numerical computation (No I/O 
access)


• Microsoft Word (M): autosaves 
every 20 seconds => I/O access


• C program (C): No I/O access
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Can we do better?



Shortest Time to Completion First (STCF)
Can we leverage STCF?

• Policy: CPU is used by one process while the other one uses the disk


• Each CPU burst can be treated of as separate job


• Better utilization of the processor
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Do we miss something?



We may not know the length or expected time of completion of 
a job? — How to handle?
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Lets go back to the example
How can Librarian take a guess?

14

Scheduler



Why don’t we Prioritise?
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Source: https://imgur.com



Lets go back to the example
Introduce Priority - Give priority, Observe and Improve
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P1 P2P3

P0



Multi Level Feedback Queues (MLFQ)
Two main features 

• Reduce turn around times


• Run shortest jobs first 


• Reduce response time


Can the policy learn continously to optimise response time and turnaround 
time?


Constraint: No apriori knowledge of the job length!
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MLFQ: Basic Rules

• Use n number of distinct queues 


• Each queue has a different priority level


• Use priority to decide which job should be run at a given time


• A job with a higher priority => job on a higher queue 


• Key idea: 

• Scheduler sets priority to different jobs


• Keep updating the priority based on observed behaviour
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Going back to the example
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MLFQ

• Jobs that keep giving back the CPU - interactive jobs (higher priority)


• Jobs that uses CPU for more time - Reduce priority 


• Learn about the processes as they run and predict future (Not using AI)


• Two basic rules: 

1. If priority (A) > Priority (B), A runs


2. If priority (A) = Priority (B), A&B run in Round Robin

20



MLFQ: Visualisation
Five queues and 4 jobs

21

• Use notion of time slices


• When job enters, high priority


• If job uses up the entire time slice


• Reduce priority (move down one queue)


• If job gives up CPU before time slice is up


• Keep it at the same priority level



Example: Single Long Running Job

• Three queues


• Priority: Q2 > Q1 > Q0


• Single job M enters at t=0


• Time slice = 10 seconds


• After running for 10 seconds, priority 
is lowered

22



Example: Short job enters

• P (interactive job) 

• Enters at t=100


• Runs for 10 second


• Goes to the second queue


• Incoming job is considered


short => placed in higher queue


• If its short, it will keep running 


• Else moves down
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Incorporating I/O

• Highly interactive job => 
relinquishes CPU faster


• Priority is kept at same level


• Long term job can take more time 
and execute in lower queue


What could be the challenges?
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What are the challenges with previous model?
It can lead to two major challenges

• Starvation 

• Too many interactive jobs will keep consuming CPU


• Long running job will never get any CPU - Starve!!


• Gaming of Scheduler 

• The process can trick the scheduler into giving more than fair share - How?


• Idea: Give an I/O request and relinquish the CPU before time slice is over


• Priority does not change!! (Monopolise the CPU)
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Another Challenge to Consider

• Program may also change behaviour over time


• Suddenly there may be more CPU intensive phases


• There may be also phases of interactiveness


• Eg: Some long numerical computation followed by interactiveness


Can you think of some way to handle this?
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Priority Boost

• Periodically boost the priority of all the jobs


• This can prevent starvation 

• Rule: After a time interval S, move all jobs to top most 
queue


• Provides two key guarantees 

• Processes are guaranteed not to starve


• If CPU bound has become interactive, scheduler will 
give it chances


• Thanks to the periodic priority updates!
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Case 1
Non priority Boost Scenario
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Starves!!

Interactive jobs keep getting the CPU



Case 2
With Priority Boost (S = 50)
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One additional Challenge

• How to determine the value of S?


• If S is very small, interactive jobs may not get proper share of CPU


• If S is too high, long running jobs could starve


• Tricky part is to come up with a value of S


• Voo-doo constants - Named by John Ousterhout 


• What about gaming the scheduler? - S by itself cannot solve it!
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Better Accountability
How to prevent gaming of the scheduler?

• Introduce one more rule


• Once a job uses its time allotment, 
it needs to be moved down


• No consideration if the job has 
relinquished CPU ahead of time 
slice


• Prevent the gaming since no matter 
what, priority reduces
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Tuning MLFQ

• How to parametrise the scheduler?


• How many queues?


• What should be the time slice?


• How often the priority boost needs to be done?


• High priority queues: Interactive jobs with shorter time slices (10 ms)


• Low priority queues: CPU bound jobs with longer time slices (100 ms or 
less)
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Example Scenario

• Different queues


• Low priority and high


Priority queues


• Each queue has a different 
slice interval


• Based on scenario, S 
changes (boost interval)
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Solaris MLFQ

• Tables to configure:


• How long should be the time slice?


• How often to boost?


• 60 queues 


• Time slice length from 20ms to few 100 milliseconds


• Priority boosted every 1 second


• Free BSD scheduler uses formula to calculate priority 
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MLFQ: Summing Up

• Five key rules are used by MLFQ:


• If P(A) > P(B),  A runs (B not)


• If P(A) >= P(B), A & B runs in Round Robin using time slice of queue


• When job enters, its placed in the highest priority


• Once job uses its time allotment at a given level => priority is reduced


• After a period, S move all jobs to top most priority queue 


• BSD Unix derivatives, Windows NT and Solaris use a form of MLFQ in their basic 
scheduler

35



What about processes in different machines?
How can they communicate?
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How does message/data from P1 in System 1 reach P1 in System 2?

What is the role of the OS in this and how does it contribute to the effectiveness?
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Thank you 
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