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Quick Recap of Scheduling 

• Hardware provides support with some mechanisms - LDE


• OS switches between processes - Context switch


• Some policy is required to decide which process to execute - Scheduling


• Different types of scheduling policies exist


• Workload estimates help 


• Metrics - Turnaround time, response time, fairness


• Policies - FCFS, SJF, STCF, RR, RR with I/O
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We may not know the length or expected time of completion of 
a job? — How to handle?
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Lets go back to the example
How can Librarian take a guess?
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Scheduler



Why don’t we Prioritise?
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Lets go back to the example
Introduce Priority - Give priority, Observe and Improve
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Multi Level Feedback Queues (MLFQ)
Two main features 

• Reduce turn around times


• Run shortest jobs first 


• Reduce response time


Can the policy learn continously to optimise response time and turnaround 
time?


Constraint: No apriori knowledge of the job length!
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MLFQ: Basic Rules

• Use n number of distinct queues 


• Each queue has a different priority level


• Use priority to decide which job should be run at a given time


• A job with a higher priority => job on a higher queue 


• Key idea: 

• Scheduler sets priority to different jobs


• Keep updating the priority based on observed behaviour
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Going back to the example

10



MLFQ

• Jobs that keep giving back the CPU - interactive jobs (higher priority)


• Jobs that uses CPU for more time - Reduce priority 


• Learn about the processes as they run and predict future (Not using AI)


• Two basic rules: 

1. If priority (A) > Priority (B), A runs


2. If priority (A) = Priority (B), A&B run in Round Robin
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MLFQ: Visualisation
Five queues and 4 jobs
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• Use notion of time slices


• When job enters, high priority


• If job uses up the entire time slice


• Reduce priority (move down one queue)


• If job gives up CPU before time slice is up


• Keep it at the same priority level



Example: Single Long Running Job

• Three queues


• Priority: Q2 > Q1 > Q0


• Single job M enters at t=0


• Time slice = 10 seconds


• After running for 10 seconds, priority 
is lowered
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Example: Short job enters

• P (interactive job)


• Enters at t=100


• Runs for 10 second


• Goes to the second queue


• Incoming job is considered


short => placed in higher queue


• If its short, it will keep running 


• Else moves down
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Incorporating I/O

• Highly interactive job => 
relinquishes CPU faster


• Priority is kept at same level


• Long term job can take more time 
and execute in lower queue


What could be the challenges?
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What are the challenges with previous model?
It can lead to two major challenges

• Starvation 

• Too many interactive jobs will keep consuming CPU


• Long running job will never get any CPU - Starve!!


• Gaming of Scheduler 

• The process can trick the scheduler into giving more than fair share - How?


• Idea: Give an I/O request and relinquish the CPU before time slice is over


• Priority does not change!! (Monopolise the CPU)
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Another Challenge to Consider

• Program may also change behaviour over time


• Suddenly there may be more CPU intensive phases


• There may be also phases of interactiveness


• Eg: Some long numerical computation followed by interactiveness


Can you think of some way to handle this?
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Priority Boost

• Periodically boost the priority of all the jobs


• This can prevent starvation 

• Rule: After a time interval S, move all jobs to top most 
queue


• Provides two key guarantees


• Processes are guaranteed not to starve


• If CPU bound has become interactive, scheduler will 
give it chances


• Thanks to the periodic priority updates!
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Case 1
Non priority Boost Scenario
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Starves!!

Interactive jobs keep getting the CPU



Case 2
With Priority Boost (S = 50)
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One additional Challenge

• How to determine the value of S?


• If S is very small, interactive jobs may not get proper share of CPU


• If S is too high, long running jobs could starve


• Tricky part is to come up with a value of S


• Voo-doo constants - Named by John Ousterhout 


• What about gaming the scheduler? - S by itself cannot solve it!
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Better Accountability
How to prevent gaming of the scheduler?

• Introduce one more rule


• Once a job uses its time allotment, 
it needs to be moved down


• No consideration if the job has 
relinquished CPU ahead of time 
slice


• Prevent the gaming since no matter 
what, priority reduces
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Tuning MLFQ

• How to parametrise the scheduler?


• How many queues?


• What should be the time slice?


• How often the priority boost needs to be done?


• High priority queues: Interactive jobs with shorter time slices (10 ms)


• Low priority queues: CPU bound jobs with longer time slices (100 ms or less)
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Example Scenario

• Different queues


• Low priority and high


Priority queues


• Each queue has a different 
slice interval


• Based on scenario, S 
changes (boost interval)
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Solaris MLFQ

• Tables to configure:


• How long should be the time slice?


• How often to boost?


• 60 queues 


• Time slice length from 20ms to few 100 milliseconds


• Priority boosted every 1 second


• Free BSD scheduler uses math formula to calculate priority 
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MLFQ: Summing Up

• Five key rules are used by MLFQ:


• If P(A) > P(B),  A runs (B not)


• If P(A) >= P(B), A & B runs in Round Robin using time slice of queue


• When job enters, its placed in the highest priority


• Once job uses its time allotment at a given level => priority is reduced


• After a period, S move all jobs to top most priority queue 


• BSD Unix derivatives, Windows NT and Solaris use a form of MLFQ in their basic 
scheduler
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What about processes in different machines?
How can they communicate?

27

How does message/data from P1 in System 1 reach P1 in System 2?

What is the role of the OS in this and how does it contribute to the effectiveness?



Let us expand it 
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• Between the process and network there needs to be an interface


• Between the network components there needs to be some interface



Network Components 
Host

• Any device that send or receive traffic: Computer, laptop, smartwatch, phone, etc


• Host can be client or server


• Servers can sometime be clients too 29
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How does host send data?
IP Address

• Host needs address to send the data


• This address is known as IP address 

• When client sends data it provides both source IP and destination IP


• IP addresses are 32 bits. Each bit can be 0 or 1


• Total of 4 octets. Each octet ranges from 0-255 (8 bits) 

• IP addresses are usually hierarchically assigned 

• Eg: 192.168.1.1 
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Sometimes we need more signal Strength
Repeater

• Repeater allows regeneration of signals for long distance communication


• Think of wifi in home


• Signal strength may not be there


• Repeater might be needed to transmit to longer ranges


• But we cannot just connect one host to another - Not Scalable!
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Hubs and Bridges

Hubs 

• Multi-port repeaters


• Key issue: Everyone receives everyones data


Bridges 

• Sit between two hubs 


• They have only two ports


• They learn which hosts are on either side (for 
routing)


• Eg: H1 wants to communicate with H2
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Switches

• Devices which facilitate 
communication within a network


• Combination of hubs and ports


• Knows or infers which hosts are on 
each port


• They have multiple ports


• Whatever connected to switch 
becomes part of one network
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Routers
• Facilitate communication between the 

networks


• They provide like a traffic control point


• Security, filtering, redirection


• Routers learn which networks they are 
attached to


• Known as routes


• Stored in a routing table


• Routers have their IP address in the 
network they are attached to
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Routers
• Allows creation of hierarchy in the 

networks


• Every time hosts wants to go out of 
the network, it goes through router


• Internet is nothing but bunch of 
routers


• Gateway (IP address of router in the 
given network)


• Becomes exit point of hosts outside 
their network
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The Bigger Picture

36



37

Thank you 

Course site: karthikv1392.github.io/cs3301_osn 
Email: karthik.vaidhyanathan@iiit.ac.in 

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

