
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Process Virtualisation - Policies (Scheduling) and
Process Communication (Intro to networks)

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• OSTEP Educator Materials, Remzi et al.
• OSTEP Book by Renzi et al.
• Modern Operating Systems, Tanenbaum et al.
• Networking Fundamentals by Practical Networking (Youtube Channel)
• Other online sources which are duly cited

2

Quick Recap of Scheduling

• Hardware provides support with some mechanisms - LDE

• OS switches between processes - Context switch

• Some policy is required to decide which process to execute - Scheduling

• Different types of scheduling policies exist

• Workload estimates help

• Metrics - Turnaround time, response time, fairness

• Policies - FCFS, SJF, STCF, RR, RR with I/O

3

We may not know the length or expected time of completion of
a job? — How to handle?

4

Lets go back to the example
How can Librarian take a guess?

5

Scheduler

Why don’t we Prioritise?

6
Source: https://imgur.com

Lets go back to the example
Introduce Priority - Give priority, Observe and Improve

7

P1 P2P3

P0

Multi Level Feedback Queues (MLFQ)
Two main features

• Reduce turn around times

• Run shortest jobs first

• Reduce response time

Can the policy learn continously to optimise response time and turnaround
time?

Constraint: No apriori knowledge of the job length!

8

MLFQ: Basic Rules

• Use n number of distinct queues

• Each queue has a different priority level

• Use priority to decide which job should be run at a given time

• A job with a higher priority => job on a higher queue

• Key idea:

• Scheduler sets priority to different jobs

• Keep updating the priority based on observed behaviour

9

Going back to the example

10

MLFQ

• Jobs that keep giving back the CPU - interactive jobs (higher priority)

• Jobs that uses CPU for more time - Reduce priority

• Learn about the processes as they run and predict future (Not using AI)

• Two basic rules:

1. If priority (A) > Priority (B), A runs

2. If priority (A) = Priority (B), A&B run in Round Robin

11

MLFQ: Visualisation
Five queues and 4 jobs

12

• Use notion of time slices

• When job enters, high priority

• If job uses up the entire time slice

• Reduce priority (move down one queue)

• If job gives up CPU before time slice is up

• Keep it at the same priority level

Example: Single Long Running Job

• Three queues

• Priority: Q2 > Q1 > Q0

• Single job M enters at t=0

• Time slice = 10 seconds

• After running for 10 seconds, priority
is lowered

13

Example: Short job enters

• P (interactive job)

• Enters at t=100

• Runs for 10 second

• Goes to the second queue

• Incoming job is considered

short => placed in higher queue

• If its short, it will keep running

• Else moves down
14

Incorporating I/O

• Highly interactive job =>
relinquishes CPU faster

• Priority is kept at same level

• Long term job can take more time
and execute in lower queue

What could be the challenges?

15

What are the challenges with previous model?
It can lead to two major challenges

• Starvation

• Too many interactive jobs will keep consuming CPU

• Long running job will never get any CPU - Starve!!

• Gaming of Scheduler

• The process can trick the scheduler into giving more than fair share - How?

• Idea: Give an I/O request and relinquish the CPU before time slice is over

• Priority does not change!! (Monopolise the CPU)
16

Another Challenge to Consider

• Program may also change behaviour over time

• Suddenly there may be more CPU intensive phases

• There may be also phases of interactiveness

• Eg: Some long numerical computation followed by interactiveness

Can you think of some way to handle this?

17

Priority Boost

• Periodically boost the priority of all the jobs

• This can prevent starvation

• Rule: After a time interval S, move all jobs to top most
queue

• Provides two key guarantees

• Processes are guaranteed not to starve

• If CPU bound has become interactive, scheduler will
give it chances

• Thanks to the periodic priority updates!

18

Case 1
Non priority Boost Scenario

19

Starves!!

Interactive jobs keep getting the CPU

Case 2
With Priority Boost (S = 50)

20

One additional Challenge

• How to determine the value of S?

• If S is very small, interactive jobs may not get proper share of CPU

• If S is too high, long running jobs could starve

• Tricky part is to come up with a value of S

• Voo-doo constants - Named by John Ousterhout

• What about gaming the scheduler? - S by itself cannot solve it!

21

Better Accountability
How to prevent gaming of the scheduler?

• Introduce one more rule

• Once a job uses its time allotment,
it needs to be moved down

• No consideration if the job has
relinquished CPU ahead of time
slice

• Prevent the gaming since no matter
what, priority reduces

22

Tuning MLFQ

• How to parametrise the scheduler?

• How many queues?

• What should be the time slice?

• How often the priority boost needs to be done?

• High priority queues: Interactive jobs with shorter time slices (10 ms)

• Low priority queues: CPU bound jobs with longer time slices (100 ms or less)

23

Example Scenario

• Different queues

• Low priority and high

Priority queues

• Each queue has a different
slice interval

• Based on scenario, S
changes (boost interval)

24

Solaris MLFQ

• Tables to configure:

• How long should be the time slice?

• How often to boost?

• 60 queues

• Time slice length from 20ms to few 100 milliseconds

• Priority boosted every 1 second

• Free BSD scheduler uses math formula to calculate priority

25

MLFQ: Summing Up

• Five key rules are used by MLFQ:

• If P(A) > P(B), A runs (B not)

• If P(A) >= P(B), A & B runs in Round Robin using time slice of queue

• When job enters, its placed in the highest priority

• Once job uses its time allotment at a given level => priority is reduced

• After a period, S move all jobs to top most priority queue

• BSD Unix derivatives, Windows NT and Solaris use a form of MLFQ in their basic
scheduler

26

What about processes in different machines?
How can they communicate?

27

How does message/data from P1 in System 1 reach P1 in System 2?

What is the role of the OS in this and how does it contribute to the effectiveness?

Let us expand it

28

• Between the process and network there needs to be an interface

• Between the network components there needs to be some interface

Network Components
Host

• Any device that send or receive traffic: Computer, laptop, smartwatch, phone, etc

• Host can be client or server

• Servers can sometime be clients too 29

Host Host

How does host send data?
IP Address

• Host needs address to send the data

• This address is known as IP address

• When client sends data it provides both source IP and destination IP

• IP addresses are 32 bits. Each bit can be 0 or 1

• Total of 4 octets. Each octet ranges from 0-255 (8 bits)

• IP addresses are usually hierarchically assigned

• Eg: 192.168.1.1

30

Sometimes we need more signal Strength
Repeater

• Repeater allows regeneration of signals for long distance communication

• Think of wifi in home

• Signal strength may not be there

• Repeater might be needed to transmit to longer ranges

• But we cannot just connect one host to another - Not Scalable!

31

Hubs and Bridges

Hubs

• Multi-port repeaters

• Key issue: Everyone receives everyones data

Bridges

• Sit between two hubs

• They have only two ports

• They learn which hosts are on either side (for
routing)

• Eg: H1 wants to communicate with H2

32

Hub

H2

H1

H3

Hub 1

H2

H1

Hub 2

H4

H3

Bridge

Switches

• Devices which facilitate
communication within a network

• Combination of hubs and ports

• Knows or infers which hosts are on
each port

• They have multiple ports

• Whatever connected to switch
becomes part of one network

33

Switch

H2

H1 H3

192.168.10.x

.30

.20

.10

What if the host 192.168.10.20 wants to communicate with

Another host in different network?

Routers
• Facilitate communication between the

networks

• They provide like a traffic control point

• Security, filtering, redirection

• Routers learn which networks they are
attached to

• Known as routes

• Stored in a routing table

• Routers have their IP address in the
network they are attached to

34

Router

Switch

H2

H1 H3

192.168.10.x

.30

.20

.10

Switch

H2

H1 H3

172.190.20.x

.30

.20

.10

Routers
• Allows creation of hierarchy in the

networks

• Every time hosts wants to go out of
the network, it goes through router

• Internet is nothing but bunch of
routers

• Gateway (IP address of router in the
given network)

• Becomes exit point of hosts outside
their network

35

Router

Switch

H2

H1 H3

192.168.10.x

.30

.20

.10

Switch

H2

H1 H3

172.190.20.x

.30

.20

.10

The Bigger Picture

36

37

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

