
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Transport Layer and how it works!

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Computer Networks, 6e by Tanebaum, Teamster and Wetherall
• Computer Networks: A Top Down Approach by Kurose and Ross
• Computer Networking essentials, Youtube Channel
• Other online sources which are duly cited

2

Network Protocol Stack

3

HTTP SMTP RTP DNS

TCP UDP

IP ICMP

DSL Ethernet 802.11 SONET

Application

Transport

Internet

Link

Onto Transport Layer
Service to Service Delivery

• Multiplexing and Demultiplexing

• Addressing scheme: Ports

• Two strategies/protocols that allows this

• Transmission Control Protocol (TCP) - favours reliability

• User Datagram Protocol (UDP) - favours efficiency

4

Lets go back
Two process wants to communicate

• Client sends a request to the server

• The server provides a reply based on the
request made by client

• Eg: File transfer to get files

• Eg: web browsing, sent a url and get page

• How to transport data from process to
process?

5

The role of Operating System

• Software component in the OS that supports network calls - Protocol stack

• Provides Service primitives which are nothing but system calls - Some API?

6

Any idea on what should be some functionalities that should be
made available?

Hint: Think of process API

7

The Socket API

• Simple abstraction to use the network

• The network service API used to write all network applications

• Part of all OS and all language [Berkley Unix, 1983]

• Allows user space applications to interact with networking subsystem

• Two services:

• Streams: Reliable (Connection-oriented)

• Datagram: Unreliable (Connection-less)

• Allows applications to attach to the network at different ports
8

The Socket API

9

Function Description

socket() Creates a new socket of a certain type (depending on TCP
or UDP) and returns file descriptor

bind() Associates the socket with a specific IP and port

listen() For server sockets, it allows sockets to listen for incoming
connections

accept() For server sockets, it waits for client to connect and then
return a new file descriptor

connect() For client sockets, it initiates a connection to a server.

send() / receive() Transmit data or receive data

close() Terminate the connection

Using Sockets

10

Time

More about Ports

11

• Application process is identified by tuple (IP address, Protocol, Port)

• Port are 16-bit integers representing “mailboxes” that process
leases

• Servers are often bind to “well-known-ports”

• Clients are assigned ephemeral ports

• Chosen by the OS temporarily

Some well Known Ports

12

Port Protocol Use

20, 21 FTP File Transfer

22 SSH Remote login

25 SMTP Email

80 HTTP World wide web

443 HTTPS Secured web

543 RTSP Media Player Control

An Opportunity for a Context Switch?

• The calls of establishing socket are blocking calls

• connect(), accept(), receive()

• Once the call is made, OS halts the program to wait to receive some
response

• They are essentially System calls

• Trap instruction is called and there is an opportunity for a context switch

13

Let us take a step back
Types of Links

• Full Duplex

• Bidirectional

• Both sides at the same time

• Half-duplex

• Bidirectional

• Both the sides but only one direction at a time (eg: walkie talkies)

• Simplex

• Unidirectional

14

Transport Services and Protocols

• Provides logical communication between
application processes running on different
hosts

• Transport protocols actions in the end
systems:

• Sender: breaks application messages
into segments, passes to network layer

• Receiver: reassembles messages into
messages, passes to application layer

• Protocols: TCP, UDP
15

H1

H2

Internet

Application

Transport

Internet

Network

Application

Transport

Internet

Network

Quick Recap

• Segments carry data across the network

• Segments are carried within the packets, within frames

• Each layer adds a header (Above L4 will be replaced by its header)

16

802.11 IP L4 App eg: HTTP
SMTP

Frame

Packet

Segment

Multiplexing and Demultiplexing

• Multiplexing as sender: Handle data
from multiple sockets, add transport
header

• Demultiplexing as receiver: Use
header info to deliver received
segments to correct socket

17

Application

Transport

Multiplexing

Demultiplexing

Working of Demultiplexing

• Host receives IP datagrams

• Each datagram has source IP address,
destination IP address

• Each datagram carries one transport layer
segment

• Each segment has source and destination
port number

• IP addresses and ports are used to direct
segment to appropriate socket

18

Source Port # Destination Port #

Other header fields

Application data
(payload)

TCP/UDP Segment format

Connection Oriented vs Connectionless
Demultiplexing Scenarios

• Connection oriented (TCP)

• TCP socket identified by 4 tuple

• Source IP, destination IP, source
port and destination port

• Receiver uses all 4 to direct segment
to appropriate socket

• Server may support many TCP
sockets

• Each socket has it own client

19

• Connectionless (UDP)

• UDP socket identified by 2 tuple

• Destination IP and port

• Receiver uses the port to redirect to
the corresponding socket

• UDP segments with same destination
port but different IP or source port

• Redirected to same socket

TCP vs UDP

20

TCP UDP

Connection Oriented Not Connection Oriented

Reliability (order is maintained and retransmission) Unreliable

Higher overhead - reliability, error checking, etc Low overhead

Flow control (based on network) No implicit flow control

Error detection - retransmit erroneous packets Has some error checking - Erroneous packets are
discarded without notification

Congestion Control No Congestion Control

Use cases: HTTP/HTTPS, File transfer, Mail Use cases: Streaming data, VoIP, DNS queries, ..

Connection Oriented and Reliability
• Connection Oriented

• In TCP, the connection is first established before the data is transmitted

• In UDP there is no notion of connection starting and ending (use timeout)

• Reliability

• Confirmation of data delivery (Acknowledgement is there) in TCP

• Order is preserved or maintained

• Error can be handled (Awareness). TCP can handle it.

• In UDP there is no confirmation, the client trusts that there is someone to receive the
data (Fire and Forget)

• No error awareness (at L4). Protocol does not handle it
21

Flow Control and Overhead

• Flow Control

• TCP can adjust the transmission rate to use maximum available bandwidth

• Check how much the receiver can receive and adjust accordingly

• Overhead

• TCP Adds a larger header to the data ~ 20 bytes or even more

• TCP has more features that does not exist in UDP

• In UDP the header length is ~ 8 bytes

22

L4 Data

UDP Segment Header

23

Source Port # Destination Port #

Application data
(payload)

UDP Segment Format

Length Checksum

32 bits• Length: In bytes of the UDP segment
including the header

• Checksum: For error detection (16 bit
value which represents the sum of UDP
header, payload and Pseudo header from
IP layer)

• Supports Error detection

• Makes use of 1’s compliment arithmetic
to find the sum

Checksum Process
• Sender

• All contents of the header including IP
addresses are treated as sequence of 16
bit integers

• Checksum: addition (one’s complement)
of segment content

• Receiver

• Compute checksum of received content

• Check if received and header checksum
are equal - No error

• Else, Error detected
24

Add it back

Sum

Checksum

Example

TCP is the most used protocol on the internet. How does TCP work?

What all you need to provide some features that TCP provides?

25

26

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

