
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Transport Layer and how it works!

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Computer Networks, 6e by Tanebaum, Teamster and Wetherall
• Computer Networks: A Top Down Approach by Kurose and Ross
• Computer Networking essentials, Youtube Channel
• Other online sources which are duly cited

2

Using Sockets

3

Time

More about Ports

4

• Application process is identified by tuple (IP address, Protocol, Port)

• Port are 16-bit integers representing “mailboxes” that process
leases

• Servers are often bind to “well-known-ports”

• Clients are assigned ephemeral ports

• Chosen by the OS temporarily

Some well Known Ports

5

Port Protocol Use

20, 21 FTP File Transfer

22 SSH Remote login

25 SMTP Email

80 HTTP World wide web

443 HTTPS Secured web

543 RTSP Media Player Control

An Opportunity for a Context Switch?

• The calls of establishing socket are blocking calls

• connect(), accept(), receive()

• Once the call is made, OS halts the program to wait to receive some
response

• They are essentially System calls

• Trap instruction is called and there is an opportunity for a context switch

6

Let us take a step back
Types of Links

• Full Duplex

• Bidirectional

• Both sides at the same time

• Half-duplex

• Bidirectional

• Both the sides but only one direction at a time (eg: walkie talkies)

• Simplex

• Unidirectional

7

Transport Services and Protocols

• Provides logical communication between
application processes running on different
hosts

• Transport protocols actions in the end
systems:

• Sender: breaks application messages
into segments, passes to network layer

• Receiver: reassembles messages into
messages, passes to application layer

• Protocols: TCP, UDP
8

H1

H2

Internet

Application

Transport

Internet

Network

Application

Transport

Internet

Network

Quick Recap

• Segments carry data across the network

• Segments are carried within the packets, within frames

• Each layer adds a header (Above L4 will be replaced by its header)

9

802.11 IP L4 App eg: HTTP

SMTP

Frame

Packet

Segment

Multiplexing and Demultiplexing

• Multiplexing as sender: Handle data
from multiple sockets, add transport
header

• Demultiplexing as receiver: Use
header info to deliver received
segments to correct socket

10

Application

Transport

Multiplexing

Demultiplexing

Working of Demultiplexing

• Host receives IP datagrams

• Each datagram has source IP address,
destination IP address

• Each datagram carries one transport layer
segment

• Each segment has source and destination
port number

• IP addresses and ports are used to direct
segment to appropriate socket

11

Source Port # Destination Port #

Other header fields

Application data

(payload)

TCP/UDP Segment format

Connection Oriented vs Connectionless
Demultiplexing Scenarios

• Connection oriented (TCP)

• TCP socket identified by 4 tuple

• Source IP, destination IP, source
port and destination port

• Receiver uses all 4 to direct segment
to appropriate socket

• Server may support many TCP
sockets

• Each socket has it own client

12

• Connectionless (UDP)

• UDP socket identified by 2 tuple

• Destination IP and port

• Receiver uses the port to redirect to
the corresponding socket

• UDP segments with same destination
port but different IP or source port

• Redirected to same socket

TCP vs UDP

13

TCP UDP

Connection Oriented Not Connection Oriented

Reliability (order is maintained and retransmission) Unreliable

Higher overhead - reliability, error checking, etc Low overhead

Flow control (based on network) No implicit flow control

Error detection - retransmit erroneous packets Has some error checking - Erroneous packets are
discarded without notification

Congestion Control No Congestion Control

Use cases: HTTP/HTTPS, File transfer, Mail Use cases: Streaming data, VoIP, DNS queries, ..

Connection Oriented and Reliability
• Connection Oriented

• In TCP, the connection is first established before the data is transmitted

• In UDP there is no notion of connection starting and ending (use timeout)

• Reliability

• Confirmation of data delivery (Acknowledgement is there) in TCP

• Order is preserved or maintained

• Error can be handled (Awareness). TCP can handle it.

• In UDP there is no confirmation, the client trusts that there is someone to receive the
data (Fire and Forget)

• No error awareness (at L4). Protocol does not handle it
14

Flow Control and Overhead

• Flow Control

• TCP can adjust the transmission rate to use maximum available bandwidth

• Check how much the receiver can receive and adjust accordingly

• Overhead

• TCP Adds a larger header to the data ~ 20 bytes or even more

• TCP has more features that does not exist in UDP

• In UDP the header length is ~ 8 bytes

15

L4 Data

UDP Segment Header

16

Source Port # Destination Port #

Application data

(payload)

UDP Segment Format

Length Checksum

32 bits• Length: In bytes of the UDP segment
including the header

• Checksum: For error detection (16 bit
value which represents the sum of UDP
header, payload and Pseudo header from
IP layer)

• Supports Error detection

• Makes use of 1’s compliment arithmetic
to find the sum

Checksum Process
• Sender

• All contents of the header including IP
addresses are treated as sequence of 16
bit integers

• Checksum: addition (one’s complement)
of segment content

• Receiver

• Compute checksum of received content

• Check if received and header checksum
are equal - No error

• Else, Error detected
17

Add it back

Sum

Checksum

Example

TCP is the most used protocol on the internet. How does TCP work?

What all you need to provide some features that TCP provides?

18

19

A Small Analogy
Communication Channel cannot be always reliable!!

What can we do from
 the protocol perspective?

Do we foresee some challenges?

Lets go into TCP - Header

20

Source Port # Destination Port #

Application data

(payload)

TCP Segment Header

Sequence Number
Acknowledgement Number

32 bits

Offset Reserved C Window

Checksum Urgent Pointer

E U A P R S F

TCP Options

Header Elements

• Sequence number: Tracks bytes that are sent (# of bytes that are sent)

• Acknowledgement number: Tracks bytes that are received (Sequence number of
the next expected byte)

• Window/Receive Window: Number of bytes the receiver can accept (Flow control)

• A: Acknowledgement bit

• R, S, F: Connection management

• C, E: Congestion notification

• Offset: Length of the TCP header

21

What do ACK and Sequence Number do?
Reliability!!

22

What do ACK and Sequence Number do?
Reliability!!

23

How to handle if data is lost?
Can we retransmit?

24

How to handle if data is lost?
Retransmission timeout also known as Round Trip Timeout (RTT)

25

TCP caches every data sent
in a buffer (OS supports)

Until retransmission timeout

What if ACK does not reach
Back Process 1.M1?

How to calculate RTT?

• SampleRTT: Time measured from segment transmission until ACK receipt

• EstimatedRTT: Estimated weighted moving average (EWMA)

• DevRTT: EWMA of sampleRTT deviation from EstimatedRTT

• TimeoutInterval: Estimated Time plus some kind of safety margin
26

α = 0.25

β = 0.75

Do We need to Send ACK for each segment?
Use delayed acknowledgements

27

What if the speed is high?

28

Sending too much data is also problem
Window Size - Flow Control

• Dynamic update of Window size will enable flow control

• What if Process 1.M2 sends a windows size of 0?
29

TCP is bidirectional
Both Senders can send data

30

How to choose sequential numbers?

• Initial sequence numbers are randomly chosen by the senders

• Each can select a sequence number during the connection establishment

• Connection establishment in TCP happens through 3-way handshake

• The 3-way handshake consist of 4 events:

• Process 1.M1 sends a connection request with SYN bit set and sequence number of X

• Process 1.M2 acknowledges the connection request and sends back an ACK with X+1

• Process 1.M2 also sends a request with the SYN bit set and sequence number [Y]

• Process 1. M1 acknowledges the receipt by sending ACK [Y+1]

31

Three Way Handshake

32

Establishing Connection

Closing Connection

• TCP has two ways to close connection: FIN and RST flags
33

Using FYN bit
Graceful termination

34

Using RST Flags
Ungraceful closing

35

But we need Memory!

36

How does OS handle the memory requirements of all these?

Where is the process stored? What about network buffer?

37

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

