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TCP is the most used protocol on the internet. How does TCP work? 

What all you need to provide some features that TCP provides?
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A Small Analogy
Communication Channel cannot be always reliable!!

What can we do from 
 the protocol perspective?

Do we foresee some challenges?



Lets go into TCP - Header
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Source Port # Destination Port #

Application data  
(payload)

TCP Segment Header

Sequence Number
Acknowledgement Number

32 bits

Offset Reserved C Window

Checksum Urgent Pointer

E U A P R S F

TCP Options



Header Elements 

• Sequence number: Tracks bytes that are sent (# of bytes that are sent)


• Acknowledgement number: Tracks bytes that are received  (Sequence number of 
the next expected byte)


• Window/Receive Window: Number of bytes the receiver can accept (Flow control)


• A: Acknowledgement bit


• R, S, F: Connection management


• C, E: Congestion notification


• Offset: Length of the TCP header
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What do ACK and Sequence Number do?
Reliability!!

6



What do ACK and Sequence Number do?
Reliability!!
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How to handle if data is lost?
Can we retransmit?
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How to handle if data is lost?
Retransmission timeout also known as Round Trip Timeout (RTT)
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TCP caches every data sent 
in a buffer (OS supports) 

Until retransmission timeout

What if ACK does not reach 
Back Process 1.M1?



How to calculate RTT?

• SampleRTT: Time measured from segment transmission until ACK receipt


• EstimatedRTT: Estimated weighted moving average (EWMA) 


• DevRTT: EWMA of sampleRTT deviation from  EstimatedRTT 


• TimeoutInterval: Estimated Time plus some kind of safety margin
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α = 0.25

β = 0.75



Do We need to Send ACK for each segment?
Use delayed acknowledgements 
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What if the speed is high?
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Sending too much data is also problem
Window Size - Flow Control

• Dynamic update of Window size will enable flow control


• What if Process 1.M2 sends a windows size of 0?
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TCP is bidirectional
Both Senders can send data 
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How to choose sequential numbers?

• Initial sequence numbers are randomly chosen by the senders


• Each can select a sequence number during the connection establishment


• Connection establishment in TCP happens through 3-way handshake 


• The 3-way handshake consist of 4 events:


• Process 1.M1 sends a connection request with SYN bit set and sequence number of X


• Process 1.M2 acknowledges the connection request and sends back an ACK with X+1


• Process 1.M2 also sends a request with the SYN bit set and sequence number [Y]


• Process 1. M1 acknowledges the receipt by sending ACK [Y+1]
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Three Way Handshake
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Establishing Connection



Closing Connection

• TCP has two ways to close connection: FIN and RST flags
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Using FYN bit
Graceful termination (Four-way closure)

18

Set FYN bit = 1



Using RST Flags
Ungraceful closing
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But we need Memory!
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How does OS handle the memory requirements of all these? 

Where is the process stored? What about network buffer?



Many processes run at the same time!
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• What about Memory? Do we have enough Memory?



Real View of Memory can be Messy!
Managing it can be even further difficult
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Memory Virtualization
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Only 
One running 

Program

• Early days OS had just one program


• OS, its code and data resides in one part


• The running program, its code and data 
resides in one part


• Does it work today?


• Today its about multiple processes


• Run process for sometime save everything 
to disk, run next - Problems?


• OS provides process virtualisation



Memory Virtualization: Why?

• We need to think about multiple processes 


• Need to increase utilisation and efficiency


• Particularly useful in olden times when it costed millions of dollars for machines


• Soon came era of time sharing 


• Batch computing was not anymore appreciated


• Instead of saving in the disk, can we keep the process on disk itself?
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An Analogy
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Keep Process in the Memory

• Each process is given a dedicated location


• There are multiple free spaces where process 
can be added


• Main challenge: We don’t want any process to 
read any other process data


• Real life OS has 100s of process that will be 
running


• Giving control to user may make it hard
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Abstraction: Virtual Address Space

• OS creates easy to use abstraction of the physical 
space


• Address space (Memory image of process)


• Program Code (and static data)


• Heap - Dynamic memory allocations (malloc)


• Stack - Function calls during runtime


• The stack and heap grow during runtime


• Every process assumes that it has access to large 
block of memory from 0 to MAX


• CPU issues loads and stores to virtual addresses 
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There is only one physical memory

• How can OS build the abstraction of a private large address space on top of 
single physical memory?


• There is only one physical memory, process feels has it has its own starting 
at 0


• When a process tries to load from a particular location, K (0)


• OS with some hardware support ensures that the load doesn’t go to 
actual location


• Rather to the physical address Z (320) - Virtualization
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How actual memory is reached?

• Address translation from virtual address 
(VA) to physical address (PA)


• CPU loads/stores to VA but memory 
hardware access PA


• OS allocates memory and tracks the 
location of the process


• Translation is done by Memory 
Management Unit (MMU)


• OS makes necessary information 
available
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VA
PA
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Thank you 
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