
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
TCP Explained and Introduction to Memory Virtualization

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

TCP is the most used protocol on the internet. How does TCP work?

What all you need to provide some features that TCP provides?

2

3

A Small Analogy
Communication Channel cannot be always reliable!!

What can we do from
 the protocol perspective?

Do we foresee some challenges?

Lets go into TCP - Header

4

Source Port # Destination Port #

Application data
(payload)

TCP Segment Header

Sequence Number
Acknowledgement Number

32 bits

Offset Reserved C Window

Checksum Urgent Pointer

E U A P R S F

TCP Options

Header Elements

• Sequence number: Tracks bytes that are sent (# of bytes that are sent)

• Acknowledgement number: Tracks bytes that are received (Sequence number of
the next expected byte)

• Window/Receive Window: Number of bytes the receiver can accept (Flow control)

• A: Acknowledgement bit

• R, S, F: Connection management

• C, E: Congestion notification

• Offset: Length of the TCP header

5

What do ACK and Sequence Number do?
Reliability!!

6

What do ACK and Sequence Number do?
Reliability!!

7

How to handle if data is lost?
Can we retransmit?

8

How to handle if data is lost?
Retransmission timeout also known as Round Trip Timeout (RTT)

9

TCP caches every data sent
in a buffer (OS supports)

Until retransmission timeout

What if ACK does not reach
Back Process 1.M1?

How to calculate RTT?

• SampleRTT: Time measured from segment transmission until ACK receipt

• EstimatedRTT: Estimated weighted moving average (EWMA)

• DevRTT: EWMA of sampleRTT deviation from EstimatedRTT

• TimeoutInterval: Estimated Time plus some kind of safety margin
10

α = 0.25

β = 0.75

Do We need to Send ACK for each segment?
Use delayed acknowledgements

11

What if the speed is high?

12

Sending too much data is also problem
Window Size - Flow Control

• Dynamic update of Window size will enable flow control

• What if Process 1.M2 sends a windows size of 0?
13

TCP is bidirectional
Both Senders can send data

14

How to choose sequential numbers?

• Initial sequence numbers are randomly chosen by the senders

• Each can select a sequence number during the connection establishment

• Connection establishment in TCP happens through 3-way handshake

• The 3-way handshake consist of 4 events:

• Process 1.M1 sends a connection request with SYN bit set and sequence number of X

• Process 1.M2 acknowledges the connection request and sends back an ACK with X+1

• Process 1.M2 also sends a request with the SYN bit set and sequence number [Y]

• Process 1. M1 acknowledges the receipt by sending ACK [Y+1]

15

Three Way Handshake

16

Establishing Connection

Closing Connection

• TCP has two ways to close connection: FIN and RST flags
17

Using FYN bit
Graceful termination (Four-way closure)

18

Set FYN bit = 1

Using RST Flags
Ungraceful closing

19

But we need Memory!

20

How does OS handle the memory requirements of all these?

Where is the process stored? What about network buffer?

Many processes run at the same time!

21

• What about Memory? Do we have enough Memory?

Real View of Memory can be Messy!
Managing it can be even further difficult

22Source: Google Images

Memory Virtualization

23

Only
One running

Program

• Early days OS had just one program

• OS, its code and data resides in one part

• The running program, its code and data
resides in one part

• Does it work today?

• Today its about multiple processes

• Run process for sometime save everything
to disk, run next - Problems?

• OS provides process virtualisation

Memory Virtualization: Why?

• We need to think about multiple processes

• Need to increase utilisation and efficiency

• Particularly useful in olden times when it costed millions of dollars for machines

• Soon came era of time sharing

• Batch computing was not anymore appreciated

• Instead of saving in the disk, can we keep the process on disk itself?
24

An Analogy

25

Keep Process in the Memory

• Each process is given a dedicated location

• There are multiple free spaces where process
can be added

• Main challenge: We don’t want any process to
read any other process data

• Real life OS has 100s of process that will be
running

• Giving control to user may make it hard

26

Abstraction: Virtual Address Space

• OS creates easy to use abstraction of the physical
space

• Address space (Memory image of process)

• Program Code (and static data)

• Heap - Dynamic memory allocations (malloc)

• Stack - Function calls during runtime

• The stack and heap grow during runtime

• Every process assumes that it has access to large
block of memory from 0 to MAX

• CPU issues loads and stores to virtual addresses
27

There is only one physical memory

• How can OS build the abstraction of a private large address space on top of
single physical memory?

• There is only one physical memory, process feels has it has its own starting
at 0

• When a process tries to load from a particular location, K (0)

• OS with some hardware support ensures that the load doesn’t go to
actual location

• Rather to the physical address Z (320) - Virtualization

28

How actual memory is reached?

• Address translation from virtual address
(VA) to physical address (PA)

• CPU loads/stores to VA but memory
hardware access PA

• OS allocates memory and tracks the
location of the process

• Translation is done by Memory
Management Unit (MMU)

• OS makes necessary information
available

29

VA
PA

30

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

