CS3.301 Operating Systems
and Networks

Memory Virtualization

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

‘.] ; ..) INTERNATIONAL INSTITUTE OF

INFORMATION TECHNOLOGY

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems: In three easy pieces, by Remazi et al.

Many processes run at the same time!

 What about Memory? Do we have enough Memory?

O

OyuE Oe

2 ® &8

Y-

Activity Monitor
® All P
rocesses

WindowServer

PyCharm

Keynote

WhatsApp Helper (Renderer)
Google Chrome Helper (GPU)
Google Chrome Helper (Renderer)
Notion Helper (Renderer)
Microsoft PowerPoint

Dropbox

java

WhatsApp

GoodNotes

Google Chrome

Microsoft Word

Finder

Notion

Microsoft Teams Helper (Renderer)
WhatsApp Helper (GPU)

Acrobat Reader

mysqld

Google Chrome Helper (Renderer)
Code Helper (Renderer)

Microsoft Teams Helper (GPU)
Google Chrome Helper (Renderer)
Google Chrome Helper (Renderer)

Google Chrome Helper (Renderer)

@ v

Process Name

CPU Memory Energy Disk Network

Mem...

2.87 GB

2.33GB

1.96 GB

1.05 GB
968.2 MB
916.6 MB
586.0 MB
564.4 MB
544.3 MB
522.0 MB
507.3 MB
473.0 MB
466.9 MB
452.7 MB
429.2 MB
420.9 MB
417.2 MB
396.6 MB
391.3 MB
384.1 MB
363.9 MB

16.00 GB
Memory Used: 13.37 GB
Cached Files: 2.58 GB
Swap Used: 8.42 GB

Physical Memory:

Threads Ports
22 8,065
79 619
10 1,988
23 291
30 619
23 484
18 205
73 54,149

151 743
83 320
38 1,051
17 722
44 3,004
45 4,345

9 1,697
32 534
22 295
11 213
37 376
40 73
24 2,283
App Memory:

Wired Memory:

Compressed:

PID

397
72518
43048

8954
1862
13979
7012
44978
55256
29886
8935
12385
1854
48352
596
6943
85080
8948
37565

506
78864

User

_windowserver
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
karthikvaidhyat
_mysql

karthikvaidhyat

2.55 GB
2.61 GB
7.68 GB

Real View of Memory can be Messy!

Managing it can be even further difficult

(= o]

I as .. Out of memeory or system resources. Close some windows or programs
'S and try again.

l OK I

Source: Google Images

Memory Virtualization

* Early days OS had just one program

64

* OS, its code and data resides in one part

* [he running program, its code and data
resides in one part

. Onl
* Does it work today? ” Current Program | One rﬂ:ning

Program
* Joday its about multiple processes (QOJG’—: data)

 Run process for sometime save everything
to disk, run next - Problems?

* OS provides process virtualisation

Mo x

Memory Virtualization: Why?

* We need to think about multiple processes

* Need to increase utilisation and efficiency

» Particularly useful in olden times when it costed millions of dollars for machines
* Soon came era of time sharing

 Batch computing was not anymore appreciated

* |Instead of saving in the disk, can we keep the process on disk itself?

6

An Analogy

Onsite Shopping

= ::I
[

-‘
£y

ClaE

Every users have access to different items but to a limited set

Online Shopping

,,,,,

'
....
....
P
.l
'

)
W2
) 0

.

’ U
0

Every Users feel that they have access to infinite items
7

Keep Process In the Memory

7 H / AN S TNG AN, AR PO AN H IR PRSI AIEHT NN LA \' g
- v i S W) I ING YO S NN N TERNTEENE 8 A VAV NS P 8. 027070 ¢, 9.0,

e g S S SISO aVa Ve .0 8 U, " N N Kot S AN BN S r .4 A TSN S v \r J & 0 N
/¢ W Fo ol N YA HT IR A A I NKE A WA RIS AN WK S IR IR FER, S K

KA Sl K S AN TR o 2 K ICH OO R IS 9.8 8 8, 20,0 W NI NS, X > @ K~
X K 5 NEHK KRS IO S TSNS KK YA VRS NERIL IR P UEFH IR IREALNEL KK AN AN
ZSESNNE YN X PAIH T AR AHREE ARG S 8 0 O S Ve el S

) RN Ve o 0%, g o o O NN N & RAWAGEIKINELS Ve . @,
oo N S XA ¥, SO V. o e X WO, by Y'Y R Y v RN '

% X, 7y p x / & ~ o : o Ve of Y &% (O
. . " » KOS of > ’ : . Ty &
K &9 4a® S b o, o WS, 4 - N RO ».',v_

K ONFE I A A RIS LK PSS THSAHN 00, O AT o NSNS D, CIRANTIHINE
K NOX _/‘) WK XK IS HEN, .\,t R AP S HEANANOL N K K O NSNS 0% o YN \/ v MO K I
P O S e A N s AN N O 2 o S N O Y0 o O 8 O

AR, iy e > . - —— 7 T S 2. 1l U2 . e s 2
r.am s e p— £ - n

 Each process is given a dedicated location

 There are multiple free spaces where process
can be added 192KB

* Main challenge: We don't want any process to 256kRB|—

?>:,LOKB¢—==—i j

read any other process data

* Real life OS has 100s of process that will be
running

Giving control to user may make it hard

128KB~———

S'S’QKBW—W

ete.)

Process 4 (eode, dota, |
ete.)

Free

44SKB | e

Free

Abstraction: Virtual Address Space

* OS creates easy to use abstraction of the physical
space

 Address space (Memory image of process)
 Program Code (and static data)
 Heap - Dynamic memory allocations (malloc)
» Stack - Function calls during runtime
* The stack and heap grow during runtime

* Every process assumes that it has access to large
block of memory from 0 to MAX

e CPU issues loads and stores to virtual addresses

9

O

KB |

2KB

15KkB

16KB

Pr‘ij(‘o\M Code.

Heap

There iIs only one physical memory

 How can OS build the abstraction of a private large address space on top of
single physical memory?

* There is only one physical memory, process feels has it has its own starting
at O

 When a process tries to load from a particular location, K (0)

* OS with some hardware support ensures that the load doesn’t go to
actual location

 Rather to the physical address Z (320) - Virtualization

10

How actual memory is reached?

e Address translation from virtual address

(VA) to physical address (PA)

CPU loads/stores to VA but memory sw«z!

hardware access PA

OS allocates memory and tracks the

location of the process

* [ranslation is done by Memory
Management Unit (MMU)

OS makes necessary information
available

125KB|

192K BI-

256KB
320KB

3E4KB

44%KB
512KB

11

/ A S O I L IR RIS BRRL
R RO, \,A\; et \i. EK XL % ,_,%A XK
‘/ \’(R /

data(coddo:ta, e,.

Free

Process C (eode, data,
ete.)

Process B (code, data,
ete.)
Free

[s o

Process 4 (ecode, data,

ete.)
Free 15KB |-
Free

16KB

VA

Pf‘ogr‘am Code

KB t
Heap
KB J/
Free

Stack

Goals of Virtualization

 Transparency

 |llusion that physical memory is not visible to any processes

* Jake away worry from the user program about what happens behind scenes
 Efficiency

 Minimize overhead in terms of space and access time
* Protection

* Protect process from one another even OS itself

 Each process must be running its own isolated cocoon safe from malicious
process

12

Memory API

* For process virtualization, we learned about APIs to create, destroy, duplicate
PrOCesSsesS

* What about memory?
* Can we think of some ways to do it?
 What are the interfaces for it?

 What are some common pitfalls that needs to be avoided?

13

Memory Allocations and Deallocations
First Type of Memory Allocation

* |In C program, two types of memory
allocation happens

e Stack Memory 000 C Program Snapshot
e Allocations and deallocations are void functionName()
managed implicitly by compilers {

int Xx;

* Called Autonomic memory

* Once execution is done, compiler
deallocates memory

o Static/global variables are allocated In
executable

14

Memory Allocations and Deallocations

Second type of Memory Allocation

e Heap memory

handled explicitly by the programmer

_ vold functionName()
 malloc() requests for space of integer {

on the heap int *x = (int *)malloc(sizeof(int));

e The routine returns the address of the
iInteger

 Heap memory is more challenging to
play with

15

The malloc|) call

MALLOCIALISTHEMEMORY:

16

WHILE TRUE {
MALILOC (SIZEOF (EGHAR)) }

5 L ?
%

\> ’ RS

? @

7
\IIEYI'I'IHEEII

The malloc|) call

e Quite a simple call
* Just pass as parameter, the size required in the heap (size_t) - Number of bytes
* The call will return pointer to new space

* Returns NULL on failure

* Under library stdlib.h

* For allocating double precision value:

double *d = (double *)malloc(sizeof (double));

17

Free() call

* Free the heap memory
* Jakes as argument the pointer returned by malloc.
* The size of allocated region is not passed by user
* Jracked by the memory allocation library itself
 Not enough we do malloc

* |ts very important to free it - why?

18

Common Errors made by Programmers

* Lot of errors arise in the usage of malloc() and free()

* Error free memory management has always been a problem
 Modern programming languages support it implicitly
 Most of the times we may call something similar to malloc)
* Free is not called in most languages by programmers

 (Garbage collectors in Java

19

Ever Come Across This?

'Y | s\

’/)
y -t L
/ = R L\

A A"
. B3,

ismmmmm e

!
.
.
B -
-

2-'
mH\lllTr RS

makeameme.org

20

Error 1: Forgetting to allocate memory

 Many routines expect memory to be allocated before invoked

® ® ® Strcpy on two strings

int main (int argc, char *argv|[])
{

char *str = "hello";

Is there some issue?

char *dst;

strcpy(dst, str);
return

)

Segmentation Fault!!

21

Not allocating enough Memory

Yes, this can also be a problem

900 Strcpy on two strings

int main (int argc, char *arqvl[])

{

char *str "hello”;

char *dst (char*)(malloc(strlen(src)))ﬂ
strcpy(dst, str);
return 0;

 Depending on how malloc is implemented, this may work more often
* strcpy may write one byte past the allocated space

* [his may result in overflow - It ran correctly doesn’t mean its correct!

22

Forgetting to Initialize Allotted Memory

® 0 Strcpy on two strings

int main (int argc, char *argv|])

1

char *src "hello”;

char *dst (charx)(malloc(strlen(src)));
printf("%ss\n", dst);
return 0;

 malloc() is called properly but no value assigned
 May result in an error -> Uninitialized read

* |t may read some data of unknown value from the heap => program will be affected!

23

Forgetting to Free Memory

 Results in Memory Leak

* Occurs when one forgets to free memory
after use

o Slowly leaking memory => system runs out
of memory => System restart!!

 When done with chunk of memory - free it
off

* Best solution: Ensure program exits! OS
will clean up everything

24

WHILE TRUE {

MATLLOC (SIZEOE"(GHAR)) }
|-

4'

a nn t

Freeing Memory before the completing the use

900 Strcpy on two strings

int main (int argc, char *argv[])
{

char *src "hello"”;
char *dst (charx)(malloc(strlen(src)+1));

free(dst);
strcpy(dst,src);
printf("%ss\n", dst);
return 0;

» (Calling free before using it
 Subsequent call of the pointer can crash the program or overload memory

 Results in a potential error due to Dangling Pointer

25

Freeing More than once

Too much of anything is dangerous!!

N N Strcpy on two strings

int main (int argc, char *arqvl[])
{
char *src "hello”;
char *dst (charx)(malloc(strlen(src)+1));

strcpy(dst,src);
printf("%ss\n", dst);
free(dst);
free(dst);

return 0;

 Free memory more than once
 Double free error

 May result in undefined issues - Memory allocation library may get confused

Calling free incorrectly

900 Strcpy on two strings

int main (int argc, char *argv|[])
{

char *src = "hello";
char *dst = (charx)(malloc(strlen(src)+1));

strcpy(dst,src);
printf("%s\n", dst);

INECEIS NI/ /Passing src instead of dst

return 0;

* free() expects to get the pointer returned from malloc() as input
 When another value is passed, bad things happen

 |nvalid free needs to be avoided

27

Common Issues with Memory

* |ots of issues with memory exist and abusing of memory happens
* | ots of tools exist to solve issues - valgrind, purify, etc.
 malloc() and free() are not system calls rather just library calls
o stdlib.h - library in C that provides functions malloc and free
» Built on top of system calls - brk or sbrk
* Brk or sbrk increases or decreases the size of heap based on value

* Not advised to call them directly

28

More on Memory related APIs

* Another system call that can be used is mmap()

* Creates anonymous memory region within the program
e Variations of malloc() exist

e calloc() -> allocates memory and initialises with O’s.

* realloc() -> add something more to the existing space allocated with
malloc()

29

The Big Question: How to Virtualise

 Each process requires memory
* OS performs context switch between processes
* Process should not overwrite each others memory
» Users should not worry about memory allocations and where to store
* OS needs to virtualise memory
 Can we do something similar to process virtualisation?

 What are the two key aspects that enabled process virtualisation?

30

Memory Virtualisation: Key Requirements

* Bring hardware into the picture (similar to LDE)
* Use some hardware support for memory management - efficiency
* OS can play its role when it comes to controlling
* Ensuring that no application has direct access to memory by its own
 Keep track of which locations are free and which are in use - control
* There should also be flexibility

* Allow programs to use address space Iin the ways they like

31

The Overall Goal

* Goal: Create an illusion that each process has its own private memory where
the code and data reside

» Reality: Many processes are actually sharing memory at the same time!
 How to make this happen? - Three Key assumptions:

» User address space must be placed contiguously in physical memory

» Size of address space is not too big; less than size of physical memory

 Each address space is of exactly the same size

32

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

33

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

