
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Memory Virtualization

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems: In three easy pieces, by Remzi et al.

2

Many processes run at the same time!

3

• What about Memory? Do we have enough Memory?

Real View of Memory can be Messy!
Managing it can be even further difficult

4Source: Google Images

Memory Virtualization

5

Only
One running

Program

• Early days OS had just one program

• OS, its code and data resides in one part

• The running program, its code and data
resides in one part

• Does it work today?

• Today its about multiple processes

• Run process for sometime save everything
to disk, run next - Problems?

• OS provides process virtualisation

Memory Virtualization: Why?

• We need to think about multiple processes

• Need to increase utilisation and efficiency

• Particularly useful in olden times when it costed millions of dollars for machines

• Soon came era of time sharing

• Batch computing was not anymore appreciated

• Instead of saving in the disk, can we keep the process on disk itself?
6

An Analogy

7

Keep Process in the Memory

• Each process is given a dedicated location

• There are multiple free spaces where process
can be added

• Main challenge: We don’t want any process to
read any other process data

• Real life OS has 100s of process that will be
running

• Giving control to user may make it hard

8

Abstraction: Virtual Address Space

• OS creates easy to use abstraction of the physical
space

• Address space (Memory image of process)

• Program Code (and static data)

• Heap - Dynamic memory allocations (malloc)

• Stack - Function calls during runtime

• The stack and heap grow during runtime

• Every process assumes that it has access to large
block of memory from 0 to MAX

• CPU issues loads and stores to virtual addresses
9

There is only one physical memory

• How can OS build the abstraction of a private large address space on top of
single physical memory?

• There is only one physical memory, process feels has it has its own starting
at 0

• When a process tries to load from a particular location, K (0)

• OS with some hardware support ensures that the load doesn’t go to
actual location

• Rather to the physical address Z (320) - Virtualization

10

How actual memory is reached?

• Address translation from virtual address
(VA) to physical address (PA)

• CPU loads/stores to VA but memory
hardware access PA

• OS allocates memory and tracks the
location of the process

• Translation is done by Memory
Management Unit (MMU)

• OS makes necessary information
available

11

VA
PA

Goals of Virtualization
• Transparency

• Illusion that physical memory is not visible to any processes

• Take away worry from the user program about what happens behind scenes

• Efficiency

• Minimize overhead in terms of space and access time

• Protection

• Protect process from one another even OS itself

• Each process must be running its own isolated cocoon safe from malicious
process

12

Memory API

• For process virtualization, we learned about APIs to create, destroy, duplicate
processes

• What about memory?

• Can we think of some ways to do it?

• What are the interfaces for it?

• What are some common pitfalls that needs to be avoided?

13

Memory Allocations and Deallocations
First Type of Memory Allocation

• In C program, two types of memory
allocation happens

• Stack Memory

• Allocations and deallocations are
managed implicitly by compilers

• Called Autonomic memory

• Once execution is done, compiler
deallocates memory

• Static/global variables are allocated in
executable

14

Memory Allocations and Deallocations
Second type of Memory Allocation

• Heap memory

• Allocations and deallocations are
handled explicitly by the programmer

• malloc() requests for space of integer
on the heap

• The routine returns the address of the
integer

• Heap memory is more challenging to
play with

15

The malloc() call

16

The malloc() call

• Quite a simple call

• Just pass as parameter, the size required in the heap (size_t) - Number of bytes

• The call will return pointer to new space

• Returns NULL on failure

• Under library stdlib.h

• For allocating double precision value:

double *d = (double *)malloc(sizeof (double));

17

Free() call

• Free the heap memory

• Takes as argument the pointer returned by malloc.

• The size of allocated region is not passed by user

• Tracked by the memory allocation library itself

• Not enough we do malloc

• Its very important to free it - why?

18

Common Errors made by Programmers

• Lot of errors arise in the usage of malloc() and free()

• Error free memory management has always been a problem

• Modern programming languages support it implicitly

• Most of the times we may call something similar to malloc()

• Free is not called in most languages by programmers

• Garbage collectors in Java

19

Ever Come Across This?

20

Error 1: Forgetting to allocate memory

• Many routines expect memory to be allocated before invoked

21

Is there some issue?

Segmentation Fault!!

Not allocating enough Memory
Yes, this can also be a problem

22

• Depending on how malloc is implemented, this may work more often

• strcpy may write one byte past the allocated space

• This may result in overflow - It ran correctly doesn’t mean its correct!

Forgetting to Initialize Allotted Memory

• malloc() is called properly but no value assigned

• May result in an error -> Uninitialized read

• It may read some data of unknown value from the heap => program will be affected!
23

Forgetting to Free Memory

• Results in Memory Leak

• Occurs when one forgets to free memory
after use

• Slowly leaking memory => system runs out
of memory => System restart!!

• When done with chunk of memory - free it
off

• Best solution: Ensure program exits! OS
will clean up everything

24

Freeing Memory before the completing the use

• Calling free before using it

• Subsequent call of the pointer can crash the program or overload memory

• Results in a potential error due to Dangling Pointer
25

Freeing More than once
Too much of anything is dangerous!!

• Free memory more than once

• Double free error

• May result in undefined issues - Memory allocation library may get confused
26

Calling free incorrectly

• free() expects to get the pointer returned from malloc() as input

• When another value is passed, bad things happen

• Invalid free needs to be avoided
27

Common Issues with Memory

• Lots of issues with memory exist and abusing of memory happens

• Lots of tools exist to solve issues - valgrind, purify, etc.

• malloc() and free() are not system calls rather just library calls

• stdlib.h - library in C that provides functions malloc and free

• Built on top of system calls - brk or sbrk

• Brk or sbrk increases or decreases the size of heap based on value

• Not advised to call them directly

28

More on Memory related APIs

• Another system call that can be used is mmap()

• Creates anonymous memory region within the program

• Variations of malloc() exist

• calloc() -> allocates memory and initialises with 0’s.

• realloc() -> add something more to the existing space allocated with
malloc()

29

The Big Question: How to Virtualise

• Each process requires memory

• OS performs context switch between processes

• Process should not overwrite each others memory

• Users should not worry about memory allocations and where to store

• OS needs to virtualise memory

• Can we do something similar to process virtualisation?

• What are the two key aspects that enabled process virtualisation?

30

Memory Virtualisation: Key Requirements

• Bring hardware into the picture (similar to LDE)

• Use some hardware support for memory management - efficiency

• OS can play its role when it comes to controlling

• Ensuring that no application has direct access to memory by its own

• Keep track of which locations are free and which are in use - control

• There should also be flexibility

• Allow programs to use address space in the ways they like

31

The Overall Goal

32

• Goal: Create an illusion that each process has its own private memory where
the code and data reside

• Reality: Many processes are actually sharing memory at the same time!

• How to make this happen? - Three Key assumptions:

• User address space must be placed contiguously in physical memory

• Size of address space is not too big; less than size of physical memory

• Each address space is of exactly the same size

33

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

