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Many processes run at the same time!

 What about Memory? Do we have enough Memory?
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Real View of Memory can be Messy!

Managing it can be even further difficult
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Memory Virtualization

* Early days OS had just one program

64

* OS, its code and data resides in one part

* [he running program, its code and data
resides in one part

. Onl
* Does it work today? ” Current Program | One rﬂ:ning

Program
* Joday its about multiple processes (QOJG’—: data)

 Run process for sometime save everything
to disk, run next - Problems?

* OS provides process virtualisation

Mo x




Memory Virtualization: Why?

* We need to think about multiple processes

* Need to increase utilisation and efficiency

» Particularly useful in olden times when it costed millions of dollars for machines
* Soon came era of time sharing

 Batch computing was not anymore appreciated

* |Instead of saving in the disk, can we keep the process on disk itself?
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An Analogy

Onsite Shopping
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Every users have access to different items but to a limited set

Online Shopping
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Every Users feel that they have access to infinite items
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Keep Process In the Memory
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 Each process is given a dedicated location

 There are multiple free spaces where process
can be added 192KB

* Main challenge: We don't want any process to  256kRB|—
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read any other process data

* Real life OS has 100s of process that will be
running

Giving control to user may make it hard
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Abstraction: Virtual Address Space

* OS creates easy to use abstraction of the physical
space

 Address space (Memory image of process)
 Program Code (and static data)
 Heap - Dynamic memory allocations (malloc)
» Stack - Function calls during runtime
* The stack and heap grow during runtime

* Every process assumes that it has access to large
block of memory from 0 to MAX

e CPU issues loads and stores to virtual addresses

9

O

KB |

2KB

15KkB

16KB

Pr‘ij(‘o\M Code.

Heap




There iIs only one physical memory

 How can OS build the abstraction of a private large address space on top of
single physical memory?

* There is only one physical memory, process feels has it has its own starting
at O

 When a process tries to load from a particular location, K (0)

* OS with some hardware support ensures that the load doesn’t go to
actual location

 Rather to the physical address Z (320) - Virtualization
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How actual memory is reached?

e Address translation from virtual address

(VA) to physical address (PA)

CPU loads/stores to VA but memory sw«z!

hardware access PA

OS allocates memory and tracks the

location of the process

* [ranslation is done by Memory
Management Unit (MMU)

OS makes necessary information
available
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Goals of Virtualization

 Transparency

 |llusion that physical memory is not visible to any processes

* Jake away worry from the user program about what happens behind scenes
 Efficiency

 Minimize overhead in terms of space and access time
* Protection

* Protect process from one another even OS itself

 Each process must be running its own isolated cocoon safe from malicious
process
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Memory API

* For process virtualization, we learned about APIs to create, destroy, duplicate
PrOCesSsesS

* What about memory?
* Can we think of some ways to do it?
 What are the interfaces for it?

 What are some common pitfalls that needs to be avoided?
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Memory Allocations and Deallocations
First Type of Memory Allocation

* |In C program, two types of memory
allocation happens

e Stack Memory 000 C Program Snapshot
e Allocations and deallocations are void functionName()
managed implicitly by compilers {

int Xx;

* Called Autonomic memory

* Once execution is done, compiler
deallocates memory

o Static/global variables are allocated In
executable
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Memory Allocations and Deallocations

Second type of Memory Allocation

e Heap memory

handled explicitly by the programmer

_ vold functionName( )
 malloc() requests for space of integer {

on the heap int *x = (int *)malloc(sizeof(int));

e The routine returns the address of the
iInteger

 Heap memory is more challenging to
play with
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The malloc|) call

MALLOCIALISTHEMEMORY:
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WHILE TRUE {
MALILOC (SIZEOF (EGHAR) ) }
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The malloc|) call

e Quite a simple call
* Just pass as parameter, the size required in the heap (size_t) - Number of bytes
* The call will return pointer to new space

* Returns NULL on failure

* Under library stdlib.h

* For allocating double precision value:

double *d = (double *)malloc(sizeof (double));
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Free() call

* Free the heap memory
* Jakes as argument the pointer returned by malloc.
* The size of allocated region is not passed by user
* Jracked by the memory allocation library itself
 Not enough we do malloc

* |ts very important to free it - why?
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Common Errors made by Programmers

* Lot of errors arise in the usage of malloc() and free()

* Error free memory management has always been a problem
 Modern programming languages support it implicitly
 Most of the times we may call something similar to malloc)
* Free is not called in most languages by programmers

 (Garbage collectors in Java

19



Ever Come Across This?
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Error 1: Forgetting to allocate memory

 Many routines expect memory to be allocated before invoked

® ® ® Strcpy on two strings

int main (int argc, char *argv|[])
{

char *str = "hello";

Is there some issue?

char *dst;

strcpy(dst, str);
return

)

Segmentation Fault!!
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Not allocating enough Memory

Yes, this can also be a problem

900 Strcpy on two strings

int main (int argc, char *arqvl[])

{

char *str "hello”;

char *dst (char*)(malloc(strlen(src)))ﬂ
strcpy(dst, str);
return 0;

 Depending on how malloc is implemented, this may work more often
* strcpy may write one byte past the allocated space

* [his may result in overflow - It ran correctly doesn’t mean its correct!
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Forgetting to Initialize Allotted Memory

® 0 Strcpy on two strings

int main (int argc, char *argv|])

1

char *src "hello”;

char *dst (charx)(malloc(strlen(src)));
printf("%ss\n", dst);
return 0;

 malloc() is called properly but no value assigned
 May result in an error -> Uninitialized read

* |t may read some data of unknown value from the heap => program will be affected!
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Forgetting to Free Memory

 Results in Memory Leak

* Occurs when one forgets to free memory
after use

o Slowly leaking memory => system runs out
of memory => System restart!!

 When done with chunk of memory - free it
off

* Best solution: Ensure program exits! OS
will clean up everything

24
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Freeing Memory before the completing the use

900 Strcpy on two strings

int main (int argc, char *argv[])
{

char *src "hello"”;
char *dst (charx)(malloc(strlen(src)+1));

free(dst);
strcpy(dst,src);
printf("%ss\n", dst);
return 0;

» (Calling free before using it
 Subsequent call of the pointer can crash the program or overload memory

 Results in a potential error due to Dangling Pointer
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Freeing More than once

Too much of anything is dangerous!!

N N Strcpy on two strings

int main (int argc, char *arqvl[])
{
char *src "hello”;
char *dst (charx)(malloc(strlen(src)+1));

strcpy(dst,src);
printf("%ss\n", dst);
free(dst);
free(dst);

return 0;

 Free memory more than once
 Double free error

 May result in undefined issues - Memory allocation library may get confused



Calling free incorrectly

900 Strcpy on two strings

int main (int argc, char *argv|[])
{

char *src = "hello";
char *dst = (charx)(malloc(strlen(src)+1));

strcpy(dst,src);
printf("%s\n", dst);

INECEIS NI/ /Passing src instead of dst

return 0;

* free() expects to get the pointer returned from malloc() as input
 When another value is passed, bad things happen

 |nvalid free needs to be avoided
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Common Issues with Memory

* |ots of issues with memory exist and abusing of memory happens
* | ots of tools exist to solve issues - valgrind, purify, etc.
 malloc() and free() are not system calls rather just library calls
o stdlib.h - library in C that provides functions malloc and free
» Built on top of system calls - brk or sbrk
* Brk or sbrk increases or decreases the size of heap based on value

* Not advised to call them directly
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More on Memory related APIs

* Another system call that can be used is mmap()

* Creates anonymous memory region within the program
e Variations of malloc() exist

e calloc() -> allocates memory and initialises with O’s.

* realloc() -> add something more to the existing space allocated with
malloc()
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The Big Question: How to Virtualise

 Each process requires memory
* OS performs context switch between processes
* Process should not overwrite each others memory
» Users should not worry about memory allocations and where to store
* OS needs to virtualise memory
 Can we do something similar to process virtualisation?

 What are the two key aspects that enabled process virtualisation?
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Memory Virtualisation: Key Requirements

* Bring hardware into the picture (similar to LDE)
* Use some hardware support for memory management - efficiency
* OS can play its role when it comes to controlling
* Ensuring that no application has direct access to memory by its own
 Keep track of which locations are free and which are in use - control
* There should also be flexibility

* Allow programs to use address space Iin the ways they like
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The Overall Goal

* Goal: Create an illusion that each process has its own private memory where
the code and data reside

» Reality: Many processes are actually sharing memory at the same time!
 How to make this happen? - Three Key assumptions:

» User address space must be placed contiguously in physical memory

» Size of address space is not too big; less than size of physical memory

 Each address space is of exactly the same size
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SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere
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