CS3.301 Operating Systems
and Networks

Memory Virtualization - Dynamic relocation and Segmentation

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

it ‘i 3 ."'
: ‘ ’ == INTERNATIONAL INSTITUTE OF
- - INFORMATION TECHNOLOGY

DDDDDDDDD

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems: In three easy pieces, by Remazi et al.

Goals of Virtualization

 Transparency

 |llusion that physical memory is not visible to any processes

* Jake away worry from the user program about what happens behind scenes
 Efficiency

 Minimize overhead in terms of space and access time
* Protection

* Protect process from one another even OS itself

 Each process must be running its own isolated cocoon safe from malicious
process

Memory API

* For process virtualization, we learned about APIs to create, destroy, duplicate
PrOCesSsesS

* What about memory?
* Can we think of some ways to do it?
 What are the interfaces for it?

 What are some common pitfalls that needs to be avoided?

Memory Allocations and Deallocations
First Type of Memory Allocation

* |In C program, two types of memory
allocation happens

e Stack Memory 000 C Program Snapshot
e Allocations and deallocations are void functionName()
managed implicitly by compilers {

int Xx;

 Called Automatic memory

* Once execution is done, compiler
deallocates memory

o Static/global variables are allocated In
executable

Memory Allocations and Deallocations

Second type of Memory Allocation

e Heap memory

handled explicitly by the programmer

_ vold functionName()
 malloc() requests for space of integer @

on the heap int *x = (int *)malloc(sizeof(int));

e The routine returns the address of the
Integer

 Heap memory Is more challenging to
play with

The malloc|) call

MALLOCIALISTHEMEMORY,

WHILE TRUE {
MALILOC (SIZEOF (EGHAR)) }

5 L ?
%

\> ’ RS

? @

7
\IIEYI'I'IHEEII

The malloc|) call

e Quite a simple call
* Just pass as parameter, the size required in the heap (size_t) - Number of bytes
* The call will return pointer to new space

* Returns NULL on failure

* Under library stdlib.h

* For allocating double precision value:

double *d = (double *)malloc(sizeof (double));

Free() call

* Free the heap memory
* Jakes as argument the pointer returned by malloc.
* The size of allocated region is not passed by user
* Jracked by the memory allocation library itself
 Not enough we do malloc

* |ts very important to free it - why?

Common Errors made by Programmers

* Lot of errors arise in the usage of malloc() and free()

* Error free memory management has always been a problem
 Modern programming languages support it implicitly
 Most of the times we may call something similar to malloc)
* Free is not called in most languages by programmers

 (Garbage collectors in Java

10

Ever Come Across This?

'Y | s\

’/)
y -t L
/ = R N

A A"
. B3, "\

ismmmmm e

!
.
.
B -
-

2-'
mH\lllTr NS

makeameme.org

11

Error 1: Forgetting to allocate memory

 Many routines expect memory to be allocated before invoked

® ® ® Strcpy on two strings

int main (int argc, char *argv|[])
{

char *str = "hello";

Is there some issue?

char *dst;

strcpy(dst, str);
return

)

Segmentation Fault!!

12

Not allocating enough Memory

Yes, this can also be a problem

900 Strcpy on two strings

int main (int argc, char *arqvl[])

{

char *str "hello”;

char *dst (char*)(malloc(strlen(src)))ﬂ
strcpy(dst, str);
return 0;

 Depending on how malloc is implemented, this may work more often
* strcpy may write one byte past the allocated space

* This may result in overflow - It ran correctly doesn’t mean its correct!

13

Forgetting to Initialize Allotted Memory

® 0 Strcpy on two strings

int main (int argc, char *argv|])

1

char *src "hello”;

char *dst (charx)(malloc(strlen(src)));
printf("%ss\n", dst);
return 0;

 malloc() is called properly but no value assigned
 May result in an error -> Uninitialized read

* |t may read some data of unknown value from the heap => program will be affected!

14

Forgetting to Free Memory

 Results in Memory Leak

* Occurs when one forgets to free memory
after use

o Slowly leaking memory => system runs out
of memory => System restart!!

 When done with chunk of memory - free it
off

* Best solution: Ensure program exits! OS
will clean up everything

15

WHILE TRUE {

MATLLOC (SIZEOE"(GHAR)) }
|-

4'

a nn t

Freeing Memory before the completing the use

900 Strcpy on two strings

int main (int argc, char *argv[])
{

char *src "hello"”;
char *dst (charx)(malloc(strlen(src)+1));

free(dst);
strcpy(dst,src);
printf("%ss\n", dst);
return 0;

» (Calling free before using it
 Subsequent call of the pointer can crash the program or overload memory

 Results in a potential error due to Dangling Pointer

16

Freeing More than once

Too much of anything is dangerous!!

N N Strcpy on two strings

int main (int argc, char *arqvl[])
{
char *src "hello”;
char *dst (charx)(malloc(strlen(src)+1));

strcpy(dst,src);
printf("%ss\n", dst);
free(dst);
free(dst);

return 0;

 Free memory more than once
 Double free error

 May result in undefined issues - Memory allocation library may get confused

Calling free incorrectly

900 Strcpy on two strings

int main (int argc, char *argv|[])
{

char *src = "hello";
char *dst = (charx)(malloc(strlen(src)+1));

strcpy(dst,src);
printf("%s\n", dst);

INECEIS NI/ /Passing src instead of dst

return 0;

* free() expects to get the pointer returned from malloc() as input
 When another value is passed, bad things happen

 |nvalid free needs to be avoided

18

Common Issues with Memory

* |ots of issues with memory exist and abusing of memory happens
* | ots of tools exist to solve issues - valgrind, purify, etc.
 malloc() and free() are not system calls rather just library calls
o stdlib.h - library in C that provides functions malloc and free
» Built on top of system calls - brk or sbrk
* Brk or sbrk increases or decreases the size of heap based on value

* Not advised to call them directly

19

More on Memory related APIs

* Another system call that can be used is mmap()

* Creates anonymous memory region within the program
e Variations of malloc() exist

e calloc() -> allocates memory and initialises with O’s.

* realloc() -> add something more to the existing space allocated with
malloc()

20

The Big Question: How to Virtualise

 Each process requires memory
* OS performs context switch between processes
* Process should not overwrite each others memory
» Users should not worry about memory allocations and where to store
* OS needs to virtualise memory
 Can we do something similar to process virtualisation?

 What are the two key aspects that enabled process virtualisation?

21

Memory Virtualisation: Key Requirements

* Bring hardware into the picture (similar to LDE)
* Use some hardware support for memory management - efficiency
* OS can play its role when it comes to controlling
* Ensuring that no application has direct access to memory by its own
 Keep track of which locations are free and which are in use - control
* There should also be flexibility

* Allow programs to use address space Iin the ways they like

22

The Overall Goal

* Goal: Create an illusion that each process has its own private memory where
the code and data reside

» Reality: Many processes are actually sharing memory at the same time!
 How to make this happen? - Three Key assumptions:

» User address space must be placed contiguously in physical memory

» Size of address space is not too big; less than size of physical memory

 Each address space is of exactly the same size

23

Memory Virtualization: An Analogy

Onsite Shopping
m 3 =B
— [| .
(r [[]
lmI 170
z'a. il Hins .ml e
N lsial | - -
TSN 1] l - T
A — L g == T e T
& == gu Vv —L

Every users have access to different items but to a limited set

Online Shopping

S
Every Users feel that they have access to infinite items %’
24

KL g KA o (/SN M

“ ARG RRELIRIRLY
5 \\‘f X/ ,'//.‘ o . N ?'/.. % 'x.‘,
N, KKK IR 7% X NS RPN NI I NG KL TR XX K ARNARIHS S

12¥KB

192KB

256KB———

320KkB

3EYKBI-

44 KB
512KB

y RN PSR ‘\‘.“" X PESLPSEIX IR ~'; X RENPNGIRAL I Al P P K » QNS ;)’.\ AL I X
R PR AR A SRS I R R X BEIHE RS XK IR PRI AL IR
LA __;,'; _\ o » \ yx. J % ,// % b,) ., "),/ .)&‘ e
RRRAGER XXX XX XL AR
IR IK S e o K\ RS X 0 ¢
XKL %, o) s 4 X g
>0, b X !
K X AR
>

Process C (eode, data,
ete.)

Process B (code, data,
ete.)

Free

SR S
Process 4 (code, data,
ete.)

Free

Free

25

2KB |

16KB

Address Translation — Recap

VA

Progrom Code

Essentially its about two things!

AX

Free

Physical Memory

How to divide this?

Essentially its about two things!

Virtual Address Space (VA) Physical Address Space (PA)
O | 9,
Program Code

64
Jcep How to translate to this?

Free Free

MAX Mox

27

Simple Program

C Program to Assembly

0 Sample Program

void func() 0 Assembly Code

{

128: movl , %eax j;load 0+ebx into eax
132: addl , %eax j;add to eax register
135: movl %eax, (%sebx) ;store eax back to mem

int Xx;

Int x = 3000;

28

W DN

O

. Fetch instruction at 128

Following Process happens

O

Pr‘o?f‘oxm Code

2KB T
Execute the instruction (load address)

akBbo o

Fetch instruction at 132

Execute the instruction (No memory
reference)

Fetch instruction at 135 14KB——

Execute the instruction (Store to 15 KB) 16«B

Heop

All
rePerences
within This
bound

29

Warehouse Scenario

o Based on a Category: Range can be decided
S > Category like Electronics, Clothing, etc

Warehouse with lots of new packages/shipments

They can be grouped - Each type of shipment can be grouped Manager/other staff: Simply go to the corresponding

in a range of locations (O - 200: Electronics) range to find the product - There is a starting and
ending value

Can we not do this at Physical Memory Level?

n |] R X\:‘ RS AR WK ISR EK AR // KPS _/// RTLTER R K2 ‘:/ LA SO
NELORIIBL R IAEIKY 0SSN RS WK KX SRS A RGBS f;/- K5 KA AR LA
KEESNIRA SR O NN 2 S O U S SOOI 0 OO IN NI O O e KR

KNI I R F AR PR K RN K LNIARICAA OIS S ARSI RSN K IR

N NEPSBE IR, P LEBRSG I A AT A I RN RIS EA R RIS AR
KR AIEINEL HE R RELA S HREL AR LA I FEARAEAL A S ARSI ISR IRH IR

SOOI IR ST AT AESESOKLAN IS KSR SRS P LS SEHINEL ALK
W NN A AT WA { ' % o X% X ANIH A H SN 2 RIS AT
MO SOOI S NN K NP K KB I .00 8508, KN 9,

KSANSLAI IR S S _’/"\;,j/_r RIS KL RAIEEAXIARIR XK AR S LN LA
v ’/,»".~ . /\, ¥ NN W FK PRSI A oo SN R NN X LHRA I
|] A K5 K 7 REIH RESEBORAMPSRKIH WA AL 000 s AKX OB HLEARER
ZRSEREL / Y SN ? o A 5 A 4 O XA 4
N SR r O 1905, 0.8, o % A »
XA 3 4 ’ SR ¢
| |

e «‘ ’. S O A AN PO S RN IR IR A S KN \ .‘

B A K / Rl A PSUIAS AN NN ANIE IR FEG IS A RS K) W I EN MK <

W SO % £ % by 4 > N K/ > K MK K) » p ¢ WA

K R RO PRI R REISI S LRI I X IELN WA A IRSEHKARNE IS,

AR IS R K IR ISP RIREBKA ALK RELSOZEA DAL KB RCIELIRLRIK

.8 0.0,%00,%"¢ LA WK RFRISICK IR AT FSLARRL 7% I AN A RIIHIKHN .\\’\X/x A IAN

K NN 2 AN %, 20 RO KA I FEANGH N 9, G0 0 O NI R 0 0SSOI

KL AIKLN X, S OOE o NN by RIKZSLAHK K RIFE AR K K H AL A 0,98, 0, W A

O St e s O S e oo s
2 AN » < RSP, DS N 8, 0,08 . WA 4 V0,58 L K XK

»’«\/ O ORI PSEAKILNES B RE LTI WK IR ISR X K \/,/‘ "9,

{

i

n {

'

. [}

IN Virtual address space but somewhere else. not in use

| _~
’

——

3L <
* The reality of physical memory is different from o,

what the process sees! Heap The

o Brca Process
 The process of translation just needs to map
Stack |
4 — — —

the two

|
|

 Can you think of a simple approach? not in use
64 |

31

Dynamic Relocation

The Base and Bounds approach

X B RN R RN IR P RN SR X RS AR IR S BRI T BT R \ RIE ‘,r\
XX L SEERKAK R RO PRI AT IRSEL AN .»/,;-/"'/, e S Y g SN ‘// ~~\.~« 5%
KSR P REISERSR LIRS I R AL SRR ARSI AT E LA AR KR
] WA KN RSISRRS Pl PR BRI SIS PSR ESI SO F IR AR AT RSN LK SIS
> 2 ;«\ Yo PAPRNIGE F A ‘,// AR PSLEE LA /».\/ O R SALIISEAK IR KIS KOS »\/\/
L R I R N %S WA K » % 2N ¥
KX \'/;..,/‘#.u; // X ~ \ % ’ \\ K // \\ b9 ¥ }.)1//
. LA .»_;\ N LKL % o s e \(\/// .(/a X
RRELAH KNKLS ST 8 25 QRIS 0 XA RIS FK
X 23 % . XA K 7 S K X
% So'® e & QLI " X LN
P % KK s
s b A

PO, 0% 78S PR ISR 2 RS AN .
I AR PN SO A INALIOR ALK INEHONOISE A UK, X ¥
B A R R R R B R BB I L A IR
e A S e O Ny 8 g O o S 00 0y g tar L SO NI
AR R R R R R IR 2035 X RSSERSI I PRLL K AARIENN QIR
070 ¢ 0,500 Vo N QO Q0 s SO I, K SISESORI ORI H IR YO K SGSP RS AR AR
u] DL _/\)‘/\-ﬁ RIS AAARLIESER R KRG XK ,// S ae o, ‘”\/\,x
00,0 O O O N U YISO AL Ao Tl P AIKIINAEH, SRR A AL S ORI 2
L K "-\}\”.\- S P IR, FIKASIOTH XL ,/.,//, ',/(:‘./ < ’\\"‘//\,‘
. ", y X : % KL KA LN %
<
{
H
H
i
}
!
13
I
A
V\Ot ‘V\ Uuse |

 Base register
32 <
[~

» Bounds register (limits register) s e

Heap The
Process

 Each program is written and compiled as if it is loaded at O
free

 However, when the program needs to be run, OS
decides the location in physical memory gl T ;

{
!

» Sets base register to that value not in use
64 L

 Here 32 KB becomes the value in base register

32

Dynamic Relocation

The Base and Bounds Approach

Physical address = Virtual address + base

Every memory reference generate by process is virtual address

Hardware just adds the base value to generate the actual physical address

This process of transforming VA to PA => (hardware-based) Address translation
Since this happens at runtime => Dynamic relocation

There is only one pair of base and bounds register in the MMU

OS can make use of simple data structure to keep track of available memory (free list)

33

Dynamic Relocation
The Base and Bounds Approach

 Bounds register ensures that any memory reference is within bounds
* Everything has to be a legal access
 |If process generates address > bounds (Either relative to VA or PA)
 CPU raises an exception (Interrupt raised)
* Process is terminated
 The base and bounds are registers part of hardware (Kept on chip)

* These registers will be inside Memory Management Unit (MMU)

34

lllustration of Base and Bounds Approach

O
 Process A has an address space of 4 KB, assume
that the base is 16 KB Bl
16 code an
* | ets say there is an access to VA 0 - PA? lene 7
e PA: 16KB - free
Stack
 Access to VA 3000 - PA? 20 B
e PA: 16384 + 3000 = 19384
« Access to VA 4400 - PA? not n use
e PA: 16384 + 4400 = 20784! Fault! Why?

There are some iIssues!

WHAT ARE. YOO WORKING ON?

TRYING TO FiX THE. PROBLEMS T
CREATED WHEN I TRIED TO Fix
THE PROBLEMS I CREATED \JHEN
LTRIED TO FiX THE PROBLEMS
I CREATED LJHEN...

/

Source: xked
36

Some Possible Issues

 Simple base and bounds approach is very limiting
« Memory Is contiguous
 One base and bounds pair per process in the MMU
 How to support large address space?
* | ot of free space between stack and heap may go unused
* A typical program would use only certain amount of memory

 But may demand more! - How to address this?

37

Segmentation

Generalized Base and Bounds approach

* |nstead of having one base and bounds per process
 Why not have it per logical segment of the address space?
 Segment: Contiguous portion of the address space of a particular length
* |n canonical address space - Three segments
 Code, Stack and Heap

 Segmentation basically allows each segment to placed in different parts of
memory

38

Segmentation

Generalized Base and Bounds

* Only used memory is allocated in physical memory

* Allows allocating large address space

e Sparse address space

—_—

S R T

* Note: Different segments can be placed in different Pree
parts of the memory - How does mapping work? /T
Stack
| free
39 64{ SRS S S SRS 2K

Hardware support (Registers)

Code (00)

32K

2K

Heap (01)

34K

2K

Stack (11)

28K

2K

40

. .ve' Rl O . e \'Qj"y S 5_0,_'/; TR DR ;'_',_TIOT'I;G__V 'f_ S, v" RS/ v"\\’;! > , o ;,.y\‘- -
S e,
R R R RIS
’é&‘?’@) 4 3 & A 9 ‘ Ry Q‘“’% 'z ,.\ ' 0,’ e
b oS!
P X KNG AN 3
KK N 0,0/0/.@\ SSNE

 Sor, o R
R @%%,00“190’ -

\.\. K Sl .. Q\'.
(3 5 CRISDEL &ob&‘
S BRI
PR, (A %2 LAY
AL SRR KR IR IR I IRAIHIIRALRRATS ‘.:1:‘3”?'5’- &0@:‘

PR . 4) > 3 R % 3 , % . o~ 5 (/N
CRELS %“.'M.&, TR PR s‘f‘g‘%" oo ol 000 RARKLLIREERAK ,\‘0\2-:,’ &
K R RIS
D SRR AR, RIS RIS I AL LI AL I RRXRELAL XX IIA AL N ISLREAR KR
i . B, R, " 4 77y TS TN Y ? - - A= .

Simple Address Translation

* Reference is made to VA: 100 and code segment

R SRR O
 MMU: Code starts at 32K

 PA: 100 + 32868 (32 KB) (100 < 2K

 Reference made to 4200 to heap segment

 Can we just add 4200 to base of heap - 348167

 Code starts at 0 in virtual address space

 Heap starts at different location - Get offset?

41

Simple Address Translation

O
Progrom Codle.
« Heap starts at 4KB in VA: 4KB - sy
e Offsetis 4200 i
6KB —
* Actual base value: 4200 - 4096 = 104: PA?
 PA: 104 + 34816 (34 KB) = 34920
Free
 How about VA of 7KB (beyond heap address)?
 Address out of bounds - process termination
o Segmentation fault or violation!
16KB

42

Wait! How to Identify the segments?

* Different segments per process - Code, stack

and heap

» EXplicit approach

e VA: 14 bit address

offset

Bits Segment
 Two different approaches - Explicit and implicit
00 Code
01 Heap
11 Stack
10
* Use first two bits to identify segment and rest
13 12 11 10 7 6 0
0 1 0 0 0 1 0
Segment Offset (0-11)

(12-13)

43

Wait! How to Identify the segments?

* With two bits - Code, heap and stack can be referred

 Still pair of bits go unused

 Some systems puts code and heap in segment and uses only one bit
* |mplicit Approach

 Based on how address was formed

* |f it was generated by programming counter during fetch => Code

 Based on stack pointer => Stack; else -> Heap!

44

What about Stack?

o Stack grows backwards!

¢ Some support from hardware to
understand which direction to go

* |t is not just about addition to base

e One bit can be used to indicate
direction

e Each bit implies extra bit to represent
the address

45

Segment Base Size Pg;ﬁ‘i':”:?
Code 32K 2K 1
Heap 34K 2K (max 4K) 1
Stack 28K 2K (max 4K) 0

Example of translation involving stack

 Reference VA: 15 KB - Physical?

 [ry to put 15 KB In binary

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Segment Stack (13-12)
it 1,1 1 0 0 0 0|0 0 00 0 0| Offset3KB(0-11)

* Grows positive 0 (Going negative)

 Maximum segment size in address space: 4 KB
 Absolute value =3 -4 =-1 KB

 PA: -1 + 28 (base) = 27 KB

46

Bounds Check and Beyond

* For bounds check, ensure that absolute negative value of offset is less than segment
size

* The different registers for storing these values are called segment registers
 Can we make this more memory efficient?

« Can we share some segments of the memory?

* Code sharing is still in use in many systems

 Hardware introduce support in the form of protection bits

 Code segment can be set to read only (Hardware can check if address is within
bounds and permissible)

47

Coarse-grained vs Fine-grained

 Coarse-grained: Memory management which takes only few segments into
consideration

 Chops memory into large sized segments

* Fine-grained: Address space consisted of large number of smaller sized
segments

* This requires further hardware support

 Segment table stored in-memory

48

Some Challenges/Issues

 Context-switch:

 OS must save segment registers and restore them | .
- Each process has own VA PHAT If Ia:\""-n vn"

* Free space management:

1.

« OS should be able find physical memory for its X

segments ‘ A
. NOTHING IS FREE

 Each process has number of segments and each 8
segment could be different size Source: imageflip.com

 Results in External Fragmentation!

49

http://imageflip.com

External Fragmentation

* Physical memory quickly becomes full of little
holes

 Hard to allocate new segments

 Consider process wishes to allocate a 20 KB
segment - 24 KB is free but not in a contiguous

space!!

« Can we come up with a compact version of
this?

50

AL .

Allocated

3 -

qo Not in Ui
Allocated

9% Not n Use

56
Allocated |

Y QS S

ompacted Version

« Seems like a more easy solution - OS
could stop the running process

 Copy data into a contiguous region

|
|
i

Allocated
 Change segment values to point to new
region |
 Now there is larger memory ¢
* Process is very memory intensive!
Not n Use

51

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

52

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

