
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Memory Virtualization - Dynamic relocation and Segmentation

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems: In three easy pieces, by Remzi et al.

2

Memory Virtualization: An Analogy

3

The Overall Goal

4

• Goal: Create an illusion that each process has its own private memory where
the code and data reside

• Reality: Many processes are actually sharing memory at the same time!

• How to make this happen? - Three Key assumptions:

• User address space must be placed contiguously in physical memory

• Size of address space is not too big; less than size of physical memory

• Each address space is of exactly the same size

Address Translation — Recap

5

VAPA

Essentially its about two things!

6

Physical Memory

Essentially its about two things!

7

Physical Address Space (PA)Virtual Address Space (VA)

Simple Program
C Program to Assembly

8

int x = 3000;

Following Process happens

1. Fetch instruction at 128

2. Execute the instruction (load address)

3. Fetch instruction at 132

4. Execute the instruction (No memory
reference)

5. Fetch instruction at 135

6. Execute the instruction (Store to 15 KB)

9

10

Warehouse Scenario

Based on a Category: Range can be decided

Category like Electronics, Clothing, etc

Can we not do this at Physical Memory Level?

• To virtualize, OS cannot place the process
starting from 0.

• The process requires same amount of space as
in Virtual address space but somewhere else.

• The reality of physical memory is different from
what the process sees!

• The process of translation just needs to map
the two

• Can you think of a simple approach?

11

The Base and Bounds approach

• Each process allocated contiguous memory (Segment)

• Two hardware registers in the CPU (MMU)

• Base register

• Bounds register (limits register)

• Each program is written and compiled as if it is loaded at 0.

• However, when the program needs to be run, OS
decides the location in physical memory

• Sets base register to that value

• Here 32 KB becomes the value in base register
12

Dynamic Relocation

Dynamic Relocation
The Base and Bounds Approach

Physical address = Virtual address + base

• Every memory reference generate by process is virtual address

• Hardware just adds the base value to generate the actual physical address

• This process of transforming VA to PA => (hardware-based) Address translation

• Since this happens at runtime => Dynamic relocation

• There is only one pair of base and bounds register in the MMU

• OS can make use of simple data structure to keep track of available memory (free list)

13

Dynamic Relocation
The Base and Bounds Approach

• Bounds register ensures that any memory reference is within bounds

• Everything has to be a legal access

• If process generates address > bounds (Either relative to VA or PA)

• CPU raises an exception (Interrupt raised)

• Process is terminated

• The base and bounds are registers part of hardware (Kept on chip)

• These registers will be inside Memory Management Unit (MMU)
14

Illustration of Base and Bounds Approach

• Process A has an address space of 4 KB, assume
that the base is 16 KB

• Lets say there is an access to VA 0 - PA?

• PA: 16KB

• Access to VA 3000 - PA?

• PA: 16384 + 3000 = 19384

• Access to VA 4400 - PA?

• PA: 16384 + 4400 = 20784! Fault! Why?

15

There are some issues!

16
Source: xkcd

Some Possible Issues

• Simple base and bounds approach is very limiting

• Memory is contiguous

• One base and bounds pair per process in the MMU

• How to support large address space?

• Lot of free space between stack and heap may go unused

• A typical program would use only certain amount of memory

• But may demand more! - How to address this?

17

Segmentation
Generalized Base and Bounds approach

• Instead of having one base and bounds per process

• Why not have it per logical segment of the address space?

• Segment: Contiguous portion of the address space of a particular length

• In canonical address space - Three segments

• Code, Stack and Heap

• Segmentation basically allows each segment to placed in different parts of
memory

18

Segmentation
Generalized Base and Bounds

• Only used memory is allocated in physical memory

• Allows allocating large address space

• Sparse address space

• Note: Different segments can be placed in different
parts of the memory - How does mapping work?

19

Hardware support (Registers)

20

Segment Base Size (Max 4K)

Code (00) 32K 2K

Heap (01) 34K 2K

Stack (11) 28K 2K

Simple Address Translation

• Reference is made to VA: 100 and code segment

• MMU: Code starts at 32K

• PA: 100 + 32868 (32 KB) (100 < 2K)

• Reference made to 4200 to heap segment

• Can we just add 4200 to base of heap - 34816?

• Code starts at 0 in virtual address space

• Heap starts at different location - Get offset?

21

Simple Address Translation

• Heap starts at 4KB in VA:

• Offset is 4200

• Actual base value: 4200 - 4096 = 104: PA?

• PA: 104 + 34816 (34 KB) = 34920

• How about VA of 7KB (beyond heap address)?

• Address out of bounds - process termination

• Segmentation fault or violation!

22

Wait! How to Identify the segments?

• Different segments per process - Code, stack
and heap

• Two different approaches - Explicit and implicit

• Explicit approach

• VA: 14 bit address

• Use first two bits to identify segment and rest
offset

23

13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 1 0 0 0 0 0 1 1 0 1 0 0 0

Segment
(12-13)

Offset (0-11)

Bits Segment

00 Code

01 Heap

11 Stack

10 -

Wait! How to Identify the segments?

• With two bits - Code, heap and stack can be referred

• Still pair of bits go unused

• Some systems puts code and heap in segment and uses only one bit

• Implicit Approach

• Based on how address was formed

• If it was generated by programming counter during fetch => Code

• Based on stack pointer => Stack; else -> Heap!

24

What about Stack?

• Stack grows backwards!

• Some support from hardware to
understand which direction to go

• It is not just about addition to base

• One bit can be used to indicate
direction

• Each bit implies extra bit to represent
the address

25

Segment Base Size Grows
Positive?

Code 32K 2K 1

Heap 34K 2K 1

Stack 28K 2K 0

Example of translation involving stack

• Reference VA: 15 KB - Physical?

• Try to put 15 KB in binary

• Grows positive 0 (Going negative)

• Maximum segment size in address space: 4 KB

• Absolute value = 3 - 4 = -1 KB

• PA: -1 + 28 (base) = 27 KB

26

13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0

Segment: Stack (13 -12)
Offset: 3 KB (0 - 11)

Bounds Check and Beyond

• For bounds check, ensure that absolute negative value of offset is less than segment
size

• The different registers for storing these values are called segment registers

• Can we make this more memory efficient?

• Can we share some segments of the memory?

• Code sharing is still in use in many systems

• Hardware introduce support in the form of protection bits

• Code segment can be set to read only (Hardware can check if address is within
bounds and permissible)

27

Coarse-grained vs Fine-grained

• Coarse-grained: Memory management which takes only few segments into
consideration

• Chops memory into large sized segments

• Fine-grained: Address space consisted of large number of smaller sized
segments

• This requires further hardware support

• Segment table stored in-memory

28

Some Challenges/Issues

• Context-switch:

• OS must save segment registers and restore them
- Each process has own VA

• Free space management:

• OS should be able find physical memory for its
segments

• Each process has number of segments and each
segment could be different size

• Results in External Fragmentation!

29

Source: imageflip.com

http://imageflip.com

External Fragmentation

• Physical memory quickly becomes full of little
holes

• Hard to allocate new segments

• Consider process wishes to allocate a 20 KB
segment - 24 KB is free but not in a contiguous
space!!

• Can we come up with a compact version of
this?

30

Compacted Version

• Seems like a more easy solution - OS
could stop the running process

• Copy data into a contiguous region

• Change segment values to point to new
region

• Now there is larger memory

• Process is very memory intensive!

31

32

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

