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Illustrative Example: Array Access

• Assume an array of 10 4-byte integers starting 
at VA 100. Assume an 8-bit VA space with 16 
byte pages


• This implies 4 bits for offset and 4 bits for 
VPN


• Each page is 24 = 16 byte size


• How shall the virtual address space be 
organized?
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Illustrative Example: Array Access
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• Access to a[0] with VA 100 - How?


• It will be a TLB miss!


• Access to a[1] will be a TLB hit!


• Access to a[3] will be a TLB miss!


• Access to a[4] to a[6] will be a hit!


• Access to a[7] will be a miss then a[8] and a[9] 
will be hit


• miss, hit, hit, miss, hit, hit, hit, miss, hit, hit


• Hit rate: 70% - Not bad!



Locality as a factor

• Spatial Locality 

• If a program accesses memory at x, it will 
likely soon access memory near x.


• What if page size was 32 bytes in previous 
example?


• Temporal Locality 

• An instruction or data that has been recently 
accessed will likely be re-accessed soon in 
the future
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Handling TLB Miss?
Hardware Handler

• Hardware handles the TLB miss entirely on CISC


• Older systems based on Intel x86


• Hardware has to know where the page tables are stored


• The base address is stored in Page Table Base Register


• Hardware would walk the entire page table in parallel to find the correct 
PTE and extract the translation, update and retry instruction
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Handling TLB Miss?
Software/OS Handler

• Software handles the TLB miss entirely on RISC


• Hardware simply raises an exception on a miss (trap handler)


• Trap handler for handling TLB miss is invoked


• The code will look up the page table for translation, updates TLB with 
privileged instruction and return from trap


• At this point hardware retries the instruction 


• There is a subtlety to context switch here - Why? 
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Some Caution!!

• When returning from TLB miss


• Hardware must save the PC of current instruction and again execute the same 
instruction for retry resulting in hit


• In usual scenario the return-from-trap goes to next instruction


• OS should not go into infinite chain of TLB misses


• TLB miss handlers are also code that requires address translation


• Keep TLB miss handlers in physical memory 


• Use some permanent translation slots for handler code
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Inside TLB

• TLB is managed by fully associative method


• A typical TLB have 32, 64 or 128 entries


• Hardware searches the entire TLB in parallel to find the translation


• Other bits


• Valid: Enty has a valid translation


• Protection: how a page can be accessed (read only, read, etc)


• Other bits: address space identifier, dirty bit, etc.
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What about Context Switch?
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VPN PFN Valid Prot

2 100 1 rwx


… … … …

TLB TableInsert TLB  
Entry



Context Switching and TLB
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VPN PFN Valid Prot

2 100 1 rwx


… … … …

2 180 1 rwx

Insert TLB  
Entry

TLB Table

Flushing can be an option but… TLB miss?



Address Space Identifier
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VPN PFN Valid Prot ASID

2 100 1 rwx
 1

… … … …

2 180 1 rwx 2

Address Space Identifier (ASID) field to distinguish (8 bits)



Processes can Share a Page

• Sharing can be useful, it reduces the number of physical frames 
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VPN PFN Valid Prot ASID

2 100 1 r-x
 1

… … … …

10 100 1 r-x 2



Still some issues!

• TLB has limited size 


• Which entry to replace when adding new entries?


• What about the size of the page table?


• Are there ways to minimise them?


• Where will they be stored?
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Memory Virtualization: High level view
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Memory Management: A Quick Recap
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The overall address 
translation Process



Size of Page Tables

• Let us take a guess about the size of a page table


• Consider a 32 bit address space with 4 KB pages. What will be the number of 
bits for offset?


• 12 (4 KB = 212)


• VPN: 20 bits, think about possible translations?


• 220 translations ~ a million mappings 

• If each mapping is 4 bytes => total 220 X 4 = 4 MB per process per page 
table


• What if there are 100 processes => 400 MB just for address translations!
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What can be done to manage size?

• Can we come up with smaller page tables?


• Linear page tables did help but they can be really big!!


• Simple solution: Why not larger pages?


• Assume a 32 bit address space but instead of 4 KB pages how about 16 
KB pages


• 16 KB = 214 (Offset -> 14 bits, VPN -> 18 bits)


• 218 entries in the page table ~ 1 MB per page table (assuming 4 bytes per 
entry)  - Almost 1/4 reduction!!
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Increasing Page Size: How good is it?

• Larger page sizes can suffer more issues with internal fragmentation


• Applications overly gets filled up with large pages and there will be empty 
sizes


• Due to this issue, most system relatively small page size


• Common size: 4 KB or 8 KB


• Can we think of something else?


• How about thinking in the lines of segmentation and paging?
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Hybrid approach: Paging and Segmentation
Can we get the best of two worlds?
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Hybrid Approach: Paging and Segmentation

• Jack Dennis, the creator of Multics had such an idea


• Construction of Multics virtual memory system


• Combine Paging and Segmentation was the key aspect


• This can have a good reduction in the size of page table


• What are the key segments in a process?


• What was the approach used in Paging?


• Let us revisit linear page table!
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Revisiting Linear Page table

• Consider a tiny 16 KB address space with 1 KB pages
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Most of the entries  
will be invalid

Lots of space 
Will be wasted!!



Hybrid Approach: Paging and Segmentation

• Instead of having one page table per process?


• Can we have it for every segment?


• There will be total of 3 pages


• With segmentation


• It was one base register


• One bound register


• In hybrid, there will be those registers in the MMU - What would be this?
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What about registers?

• Base register and bounds register


• Base register is about base of the page table that correspond to the segment


• Bound indicates the end of the page table


• Assume 32 bit VA space with 4 KB pages and address space split into three 
segments


• How to do addressing?
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How good is the Hybrid Approach

• The good parts


• Ensures significant memory savings compared to linear page table


• Any reason?


• Unallocated size between stack and heap no longer takes up space in page table?


• Some issues


• Segmentation is used - Not quite flexible as paging


• The problem of external fragmentation comes back - Page tables can be of arbitrary 
size. Finding memory for them can be difficult
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Going back to the Analogy
Over the idea of categories
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Going back to the Analogy
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Introducing Multi-level Page Tables

• In simple terms - Turn the page table into a tree like structure 


• Chop up the page table into page sized chunks


• If an entire page of page table is full of invalid entries, don’t allocate that 
page of the page table at all.


• To track, use a simple data structure, Page Directory 

• Page directory can specify where the Page of page table is located


• It allows to ensure that a part of the page table contains no valid pages
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Lets revisit Linear Page Table in Action
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Valid Prot PFN
1 rw 15
1 rwx 16
0 - -
0 - -
0 - -
1 rx 100
1 rwx 25



Multiple levels of Mappings are Required
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Valid PFN
1 201
0 -
0 -
1 204

The Page Directory (PFN: 200)

Valid Prot PFN
1 rw 15
0 rwx 16
0 - -
0 - -

Valid Prot PFN
1 rx 100
0 rwx 25
0 - -
0 - -

Page 0 of PT (PFN 201)

Page 3 of PT (PFN 204)

Page 1 and 2 are not allocated - PDBR?



Multi-Level Page Tables has Advantages

• Allocate page table space promotional to the address space being used


• Each portion of the page table fits neatly within a page


• Easier to manage memory


• OS can simply grab the next free page when it needs to grow the page table


• Compare with linear page table indexed by VPN requires contiguous memory


• If page table is large, finding such block of memory may be hard!


• Multi-level page table also comes with a cost - Any guess?
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Multi-Level Page Table comes with Overhead

• TLB Miss Scenario


• There will be two loads from the memory


• One for the Page directory and one for PTE itself


• Trade-off between time and space


• Smaller page tables, yes but not free! - Lookups are costly


• Another issue is complexity


• Building the multi-level tables and complicated lookups
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An Illustrative Example

• Consider an address space of 16 KB with 64-byte pages


• 16 KB: 214 as bits


• 14 bit virtual address space


• 64 byte implies - 6 bits for offset


• 8 bits remaining for VPN


• Assume that 0 and 1 are for code, 4 and 5 for stack, 254 and 255 for heap


• If it was full table then 256 entries - Assume each entry 4 bytes ~ 1 KB table
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An Illustrative Example

• Can be divided into 16, 64 byte pages


• Each page can hold 16 PTE (16 *4 = 64)


• 256 entries spread over 16 pages


• Number of entries in the Page Directory: 16  How?


• Number of bits required to index into directory: 4 How?


• Number of bits required to index into PTE: 4 How?
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Representation
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An Illustrative Example

• Eg: Address translation 


• 11 1111 1000 0000


• 8 bits VPN: 4 bits for PDR, 4 bits for getting to PTE


• Last 6 bits offset 


• Try to work it out!
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Solution

• 1111 points to 101


• PT corresponding to PFN 101


• Next step is to get the PTE


• VPN (1110) corresponds to 14th entry


• PFN of the 14th entry is 55! 


• Add offset to 55 PFN to get the exact physical address!
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More than Two Levels

• Its not about just two levels in Multi-level page tables 

• Deeper tree is possible


• Why is it required?


• Assume a 30 bit Virtual address space and 512 byte pages


• Virtual address has 21 bits for VPN and 9 bits for offset


• Assuming PTE is 4 bytes, 128 PTE can fit on single page


• 7 bits required to index into PT to get the PTE


• Remaining 14 bits for mapping to get PT from PDR!!
42



Multi-level page tables

• Page directory itself is divided into multiple pages


• One additional meta directory on top of all directories


• The top most one points to the right directory


• The directory further points to the correct Page table to fetch PTE


• The PTE and offset is combined to generate physical address


• In case of TLB miss, the memory look up will be multi access


• In two level itself it can be two additional access 
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The overall flow
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Inverted Page Tables
Not this one!
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Inverted Page Tables

• Instead of having one page table per process 


• Have one single page table for all the processes


• Searching for an entry is like searching through entire table


• Linear scan can be very expensive!!


• Remember: Page tables are just data structures 


• All crazy combinations can be though off! (Hash tables)
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Some more questions needs answers!

• What if the size of the address space is larger than the physical space?


• Are all pages of all active processes always in main memory?


• All of them may not fit in the main memory - so how does it work?


• OS uses a part of the disk (swap space) to store pages that are not active in 
use - How does that work?
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