
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Memory Virtualization - Paging: Mechanisms and Policies

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems: In three easy pieces, by Remzi et al.
• Lectures on Operating Systems by Youjip Won, Hanyang University

2

3

The overall address
translation Process

The overall Flow of Multi-level page tables

4

Some more questions needs answers!

• What if the size of the address space is larger than the physical space?

• Are all pages of all active processes always in main memory?

• All of them may not fit in the main memory - so how does it work?

• OS uses a part of the disk (swap space) to store pages that are not active in
use - How does that work?

5

What about Memory Hierarchy?

• Not every page needs to be available in physical memory

• Use additional level of memory

• OS can stash away portions of address spaces that are currently not in
demand

• What is something that has more memory than physical memory?

• What about hard disk? But how?

6

Moving between Physical Memory and Disk
Demand Paging

• How can OS make use of the
slower, larger and faster, smaller
device more effectively?

• This allows to provide the
illusion of large virtual address
space

• Think about manually moving
pieces of code and data in and
out of memory as needed

7

Leverage Swap Space!!

8
https://prateekvjoshi.com/2015/03/21/how-to-add-swap-space-on-ubuntu/

Leverage Swap Space

• Enables OS to swap out some pages to swap space (in disk)

• This is much needed in multi-programming

• Physical memory cannot hold all the pages - Always limited

• Swap Space: Dedicated space in the memory which can be used by OS to
swap in and out pages

• OS should be able to read and write page sized units from/to swap space

• How does OS remember the location of page in swap space?

9

Swap Spaces

10

Swap Spaces

• The use of swap space allows OS to give perception that process has
abundant memory

• OS can take from memory and add it to swap space

• Swapping provides a big support to OS for memory management

• How to make use of swap?

• When to use swap?

• How to make memory management work?

11

Can we not leverage present bit?

• In usual scenario, if there is TLB miss

• OS gets the PTE from the page table

• But if we need to use swap

• The OS needs to know if the page is in the physical memory

• Leverages the use of present bit

• If present bit is 1, page is in the page table

• If present bit is 0, page is in the swap space

12

Page Fault

• The act of accessing page that is not there in the physical memory

• When a page is not in the physical memory

• Hardware does not know how to handle it, raises exception

• The OS has to service the page fault

• Piece of code to achieve this - Page Fault Handler

• This needs to be done both in the case of hardware or software-managed
TLB

13

Page Fault

• How does OS know where to find a page during page fault?

• OS can make use of bits in PTE (PFN) to store such information

• On page fault

• OS searches through PTEs

• Gets the address from the PFN

• Page fault handling involves Disk I/O

• There is a possibility for Context-switch - How?

14

Page Fault and Context Switches

• On page fault

• OS has to handle the fault

• The process will be moved to a blocked state

• OS will be free to run other process

• On the servicing of page fault -> Another process can be executed

• What if the memory is full?

• Some pages has to be moved out of physical memory

• The process of swapping pages in/out from/of memory - Page Replacement!

15

Page Fault Control Flow

16

Hardware Perspective OS Perspective

Page Replacement Policy

• How can the OS decide which pages to evict form the memory?

• Makes use of a replacement policy

• Goal is to maximize page access from memory

• If we treat physical (main) memory as cache

• Goal is to minimize cache misses

• In other words, goal is to maximize number of times page is read from/
written to in main memory

17

Defining a metric

• % of hits to cache = Cache Hit

• % of misses on cache = Cache Miss

• Average Memory Access Time (AMAT)

•

• - Cost of accessing Memory

• - Cost of accessing Disk

AMAT = (Hit% * TM) + (Miss% * TD)

TM

TD

18

A Small Illustration

• Consider a tiny address space of 4 KB with 16 pages

• Page size: 256 bytes; VPN: 4 bits and offset: 8 bits

• Assume that every page except Page 3 are in virtual memory

• Sequence: hit, hit, hit, miss, hit, hit, hit, hit, hit, hit

• Hit% = 90, 10% mis rate

• AMAT = 0.9 * 100 (nano seconds) + 0.1*10 (microseconds) ~ 1 ms

• What if hit rate is 99.9%?

• The cost of disk access can be so high - A single miss is very costly!!
19

Optimal Replacement Policy

• Developed by Belady, many years ago, also known as MIN

• Simple approach - replace the page that will be accessed farthest in future

• If some page needs to be evicted

• Evict the page that is needed farthest from now

• Pages in the cache are more important now than the pages that will be
access farthest in future

• Known as the optimal policy - not practical!

20

Optimal Replacement Policy

• Consider a stream of Virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1 cache size: 3

21

Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0,1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 2 0, 1, 3
0 Hit 0, 1, 3
3 Hit 0, 1, 3
1 Hit 0, 1, 3
2 Miss 3 (0 or 3) 0, 1, 2
1 Hit 0, 1, 2

Hits: 6/11

Optimal Replacement Policy

• 2 is replaced first in the example as it is required least in future compared to
others

• The first three access are misses - Cache is in empty state

• This is called cold-start miss or compulsory miss

• Optimal is like an ideal policy for any set of access

• Very difficult to implement as in reality future is not known apriori!

• What can be a good alternative?

22

FIFO Policy
First in First Out

• Earlier systems avoided the complexity to implement the optimal policy

• Simple first in first out approach

• Pages are placed in a queue

• When need for eviction: Evict the pages on the top

• Advantage: Very easy to implement

• At any point, evict the one that came first!

23

FIFO Policy

• Consider access to a stream of Virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1,
cache size: 3 pages

24

Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0,1
2 Miss 0, 1, 2
0 Hit -> 0, 1, 2
1 Hit -> 0, 1, 2
3 Miss 0 -> 1, 2, 3
0 Miss 1 -> 2, 3, 0
3 Hit -> 2, 3, 0
1 Miss 2 -> 3, 0, 1
2 Miss 3 -> 0, 1, 2
1 Hit -> 0, 1, 2

Needs
Improvement !!

Hits: 4/11

Belady’s Anomaly

• Consider a stream 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5, cache size: 3

25

Access Hit/Miss? Evict Cache State
1 Miss 1
2 Miss 1, 2
3 Miss 1, 2, 3
4 Miss 1 2, 3, 4
1 Miss 2 3, 4, 1
2 Miss 3 4, 1, 2
5 Miss 4 1, 2, 5
1 Hit 1, 2, 5
2 Hit 1, 2, 5
3 Miss 1 2, 5,3
4 Miss 2 5, 3, 4
5 Hit 5, 3, 4

What if
Cache size is 4?

Hits: 3/12

Belady’s Anomaly

• Consider a stream 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5, cache size: 4

26

Access Hit/Miss? Evict Cache State
1 Miss 1
2 Miss 1, 2
3 Miss 1, 2, 3
4 Miss 1, 2, 3, 4
1 Hit 1, 2, 3, 4
2 Hit 1, 2, 3, 4
5 Miss 1 2, 3, 4, 5
1 Miss 2 3, 4, 5, 1
2 Miss 3 4, 5, 1, 2
3 Miss 4 5, 1, 2, 3
4 Miss 5 1, 2, 3, 4
5 Miss 1 2, 3, 4, 5

Something
strange?

Hits: 2/12

Random Policy

• Picks a random page to replace under memory pressure

• Has properties similar to FIFO - very easy to implement

• Random totally depends on luck to get it right

• Need to run multiple times to get good approximation

• May perform a touch better than FIFO but little less than optimal

• How does that work?

27

Random Policy
• Consider access to a stream of Virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1,

cache size: 3 pages

28

Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 0, 1, 2
1 Hit 0, 1, 2
3 Miss 1 0, 2, 3
0 Hit 0, 2, 3
3 Hit 0, 2, 3
1 Miss 2 0, 3, 1
2 Miss 0 3, 1, 2
1 Hit 3, 1, 2

Hits: 5/11

Least Recently Used (LRU)

• As done in scheduling can we use history as a guide?

• Idea: If a page was referenced recently, it may be likely to be referenced again

• The historical information that page replacement can use: Frequency

• The more recently a page has been accessed, it should not be replaced soon

• LRU: replaces the least recently used page

• Works well due to locality of references (Temporal locality here)

29

Least Recently Used

• Consider access to a stream of Virtual pages: 0, 1, 2, 0, 1, 3, 0, 3, 1, 2, 1,
cache size: 3 pages

30

Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0, 1
2 Miss 0, 1, 2
0 Hit 1, 2, 0
1 Hit LRU -> 2, 0, 1
3 Miss 2 LRU -> 0, 1, 3
0 Hit LRU -> 1, 3, 0
3 Hit LRU -> 1, 0, 3
1 Hit LRU -> 0, 3, 1
2 Miss 0 LRU -> 3, 1, 2
1 Hit LRU -> 3, 2, 1

Hits: 6/11

Implementing LRU

• How to implement policies like LRU?

• OS is not involved in every memory access - How does it know which page is
the least recently used?

• Hardware can help along with some approximations

• When a page is accessed, MMU can set the “accessed” bit to 1 in PTE

• It is the responsibility of OS to clear the bit

• How can the “accessed” bit be used by the OS to implement LRU?

31

Implementing LRU

32

• Simple and early approach, many approaches exist

• When replacement needs to be done, OS checks if
a page, P pointed to has use bit 1 or 0

• If use bit is 1, set that to 0 and go to the next
page

• If use bit is 0, that page becomes the victim for
eviction

• Avoid repetitive scanning, not the optimal, still
works better

• Improved version makes use of dirty bit

Implementing LRU

• If a page has been modified

• It has to be pushed to disk and write to disk needs to be done

• If not, if page is clean, it can simply be replaced - overhead is less!

• Make use of a new bit - modified or dirty bit in the PTE

• If a page has been recently modified -> dirty bit is set to 1

• If the page is clean and not modified -> dirty bit is set to 0

• Clock algorithm first scans for pages that are both unused and clean

• If no page with both unused and clean status, evict unused and dirty pages

33

Thrashing

• What to do if the memory is oversubscribed?

• Memory demands of running processes
exceeds available physical memory

• System will be constantly paging -
Thrashing

• One approach is admission control

• Try to run only a subset of processes
instead of trying to accommodate
everything

• More aggressive approach: Kill memory
intensive processes 34

35

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

