CS3.301 Operating Systems
and Networks

Memory Virtualization - Paging: Mechanisms and Policies

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

it ‘i 3 ."'
: ‘ ’ == INTERNATIONAL INSTITUTE OF
- - INFORMATION TECHNOLOGY

DDDDDDDDD

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems: In three easy pieces, by Remazi et al.
e [.ectures on Operating Systems by Youjip Won, Hanyang University

V

1. Load address 2b. Check with MMU

! !

L. Check The m‘te,rno\l 2c. Check inside TLB

CPU cache
2c.l Get the physical
NO ves > address, retum to
TLB wt? CPU
Aa Extract physical Ae. Look up :
address 'thr*ouf/h 'tlf\e, P Osae
table
2c.d Get the

translation (PTE)

}

204 Updote TLB The overall address

with translation

] translation Process

Ac.5. Re,tr‘y
nstruction

V

5. Get PA and
access

The overall Flow of Multi-level page tables

1. Get e_n‘br‘y of Page, | . 4, Get PTE from
Directory the index
| \
VO 5. PA p—-{; PFN +
Valid? orfrset
V
Terminate the Yes
process < V
A. Gio to the next
level of PD
NO
Valid?
Yes

. Set the Pouje,
table location

Some more questions needs answers!

 What if the size of the address space is larger than the physical space?

* Are all pages of all active processes always in main memory?

* All of them may not fit in the main memory - so how does it work?

 OS uses a part of the disk (swap space) to store pages that are not active in
use - How does that work?

What about Memory Hierarchy?

* Not every page needs to be available in physical memory

* Use additional level of memory

» OS can stash away portions of address spaces that are currently not in
demand

 What is something that has more memory than physical memory?

 What about hard disk? But how?

Moving between Physical Memory and Disk

Demand Paging

e How can OS make use of the
slower, larger and faster, smaller

device more effectively?

* This allows to provide the
illusion of large virtual address

space

* Think about manually moving
pieces of code and data in and

out of memory as needed

Faster access
Less Qapaci’ty

PhysicoJ Memon/

-~ 3 X - - ; —_—
2 RS
KELSEASND,
KKK FATHK S)Y
QRIS SRR
¢ * @.>0,%
L % \\\ /_S /;‘\,*
e, R I .
R, SRR,
X % : ore Coapac
¥ K 2 X /(/// 25 ® KR 7 % ///\\,x \/ 5 /A'\J((*\(‘l \‘vv‘ LA
% (\\(\(\<\ & LI K ILOHTIN
Vo D LA R

I RAN OUT OF SPACE IN
MY APARTMENT. CAN I
KEEP SOME OF MY STUFF

AT YOUR PLACE?

YOU DON'T HAVE TO
SAY IT LIKE "THAT"

\

u[\[\
"

https://prateekvjoshi.com/2015/03/21/how-to-add-swap-space-on-ubuntu/

Leverage Swap Space!!

OF COURSE! THAT'S WHAT
I'M HERE FOR .. TO SAVE

YOU WHENEVER YOU GET
INTO TROUBLE BECAUSE

OF YOUR POOR PLANNING

Leverage Swap Space

 Enables OS to swap out some pages to swap space (in disk)
* This Is much needed in multi-programming
* Physical memory cannot hold all the pages - Always limited

 Swap Space: Dedicated space in the memory which can be used by OS to
swap in and out pages

* OS should be able to read and write page sized units from/to swap space

 How does OS remember the location of page in swap space?

Swap Spaces

PFN O PFN | PFN 2 PFN 3
Proc O Proc 1 Proc 1 W Proc 2
LvPN 0] Lvev 2] LvPy 3] Lvewn 1]

Block 0 Block 1

Proc O
LveN 1

|

Plntfsicaxl Me,mon/

Block 2 Block 3 Block ¢

Proc O

LvPN 2]

«%

Proc O
LvPN 3]

Proc 1

LvPN 0]

[free]

Block 5 Block 6 Block 7

Swap Space

Swap Spaces

* The use of swap space allows OS to give perception that process has
abundant memory

 OS can take from memory and add it to swap space

 Swapping provides a big support to OS for memory management

 How to make use of swap?

 When to use swap?

« How to make memory management work"?

11

Can we not leverage present bit?

 |n usual scenario, if there is TLB miss
 OS gets the PTE from the page table
 But if we need to use swap
 The OS needs to know if the page is in the physical memory
» | everages the use of present bit
* |f present bit is 1, page is in the page table

* |f present bit is 0, page is in the swap space

12

Page Fault

 The act of accessing page that is not there in the physical memory
 When a page is not in the physical memory
 Hardware does not know how to handle it, raises exception
 The OS has to service the page fault
* Pilece of code to achieve this - Page Fault Handler

* This needs to be done both in the case of hardware or software-managed
TLB

13

Page Fault

 How does OS know where to find a page during page fault?
 OS can make use of bits in PTE (PFN) to store such information
* On page fault
* OS searches through PTEs
* (Gets the address from the PFN
* Page fault handling involves Disk I/O

* There is a possibility for Context-switch - How?

14

Page Fault and Context Switches

* On page fault

* OS has to handle the fault

* The process will be moved to a blocked state

* OS will be free to run other process

* On the servicing of page fault -> Another process can be executed
 What if the memory is full?

 Some pages has to be moved out of physical memory

* The process of swapping pages in/out from/of memory - Page Replacement!

15

Page Fault Control Flow

1. Check Page Table

. Chesk for free S g
page in PM
Present?
No
Y Available?
< \ 1.2b Read Disk
1.1, 676’? A 1.2 Raise Exce,p‘tion
i Yes
1.1. Update PTE and 1.2c Update PTE

Lla Retry Swop from disk and Swop
mstruction

Hardware Perspective OS Perspective

16

Page Replacement Policy

 How can the OS decide which pages to evict form the memory?
 Makes use of a replacement policy

* (Goal is to maximize page access from memory
* |f we treat physical (main) memory as cache
* (Goal is to minimize cache misses

* |In other words, goal is to maximize number of times page is read from/
written to in main memory

17

Defining a metric

9% of hits to cache = Cache Hit
e 9% of misses on cache = Cache Miss

 Average Memory Access Time (AMAT)
o AMAT = (Hit% *T),) + Miss% * T,
« [, - Cost of accessing Memory

« I - Cost of accessing Disk

18

A Small lllustration

 Consider a tiny address space of 4 KB with 16 pages
 Page size: 256 bytes; VPN: 4 bits and offset: 8 bits
 Assume that every page except Page 3 are in virtual memory
» Sequence: hit, hit, hit, miss, hit, hit, hit, hit, hit, hit
e Hit% =90, 10% mis rate
« AMAT = 0.9 * 100 (nano seconds) + 0.1*10 (microseconds) ~ 1 ms
 What if hit rate is 99.9%7?

* The cost of disk access can be so high - A single miss is very costly!!

19

Optimal Replacement Policy

 Developed by Belady, many years ago, also known as MIN
e Simple approach - replace the page that will be accessed farthest in future
* |f some page needs to be evicted

* Evict the page that is needed farthest from now

 Pages in the cache are more important now than the pages that will be
access farthest in future

 Known as the optimal policy - not practical!

20

Optimal Replacement Policy

 Consider a stream of Virtual pages: 0,1, 2,0, 1, 3,0, 3, 1, 2, 1 cache size: 3

Access

Hit/Miss?

Evict

Cache State

o

Miss

0

Miss

-
—

Miss

Hit

Hit

Miss

Hit

Hit

Hit

Miss

3 (0 or 3)

- N =2 WO WO N =

Hit

OO0 000 0 0 0O o
A | Al alalala|la|lalal
NN NN W W W W NN

21

Hits: 6/11

Optimal Replacement Policy

e 2 Is replaced first in the example as it is required least in future compared to
others

* The first three access are misses - Cache is in empty state
* This is called cold-start miss or compulsory miss
 Optimal is like an ideal policy for any set of access
* Very difficult to implement as in reality future is not known apriori!

 What can be a good alternative?

22

FIFO Policy

First in First Out

* Earlier systems avoided the complexity to implement the optimal policy
o Simple first in first out approach
 Pages are placed in a queue
 When need for eviction: Evict the pages on the top
 Advantage: Very easy to implement

* At any point, evict the one that came first!

23

FIFO Policy

 Consider access to a stream of Virtual pages: 0,1,2,0,1, 3,0, 3, 1, 2, 1,

cache size: 3 pages

Access Hit/Miss? Evict Cache State

0 Miss 0

1 Miss 0,1

2 Miss 0,1,2
0 Hit ->0,1,2
1 Hit ->0,1,2
3 Miss 0 ->1,2,3
0 Miss 1 ->2,3,0
3 Hit ->2,3,0
1 Miss 2 -> 3,0, 1
2 Miss 3 ->0,1,2
1 Hit ->0,1,2

24

Hits: 4/11

Needs
Improvement !!

e Considerastream1,2,3,4,1,2,5,1,2,3,4,5, cache size: 3

Belady’s Anomaly

Access Hit/Miss? Evict Cache State

1 Miss 1

2 Miss 1,2
3 Miss 1,2, 3
4 Miss 1 2,3,4
1 Miss 2 3,4, 1
2 Miss 3 4,1, 2
5 Miss 4 1,2,5
1 Hit 1,2,5
2 Hit 1,2,5
3 Miss 1 2,95,3
4 Miss 2 53,4
5 Hit 5,3, 4

25

Hits: 3/12

What if
Cache size is 4?

Belady’s Anomaly

e Considerastream1,2,3,4,1,2,5,1,2,3, 4,5, cache size: 4

Access Hit/Miss? Evict Cache State
1 Miss 1
2 Miss 1,2
3 Miss 1,2, 3
4 Miss 1,2,3,4
1 Hit 1,2,3,4
2 Hit 1,2,3,4
5 Miss 1 2,3,4,5
1 Miss 2 3,4, 5,1
2 Miss 3 4,5,1,2
3 Miss 4 5, 1,2,3
4 Miss 5 1,2,3,4
5 Miss 1 2,3,4,5

26

Hits: 2/12

Something
strange?

Random Policy

* Picks a random page to replace under memory pressure

* Has properties similar to FIFO - very easy to implement
 Random totally depends on luck to get it right

* Need to run multiple times to get good approximation

 May perform a touch better than FIFO but little less than optimal

e How does that work?

27

Random Policy

 Consider access to a stream of Virtual pages: 0,1,2,0,1, 3,0, 3, 1, 2, 1,

cache size: 3 pages

Access Hit/Miss? Evict Cache State

0 Miss 0

1 Miss 0O, 1

2 Miss 0,1,2
0 Hit 0,1,2
1 Hit 0,1,2
3 Miss 1 0, 2,3
0 Hit 0,2,3
3 Hit 0,2,3
1 Miss 0, 3, 1
2 Miss 3,1,2
1 Hit 3,1,2

28

Hits: 5/11

Least Recently Used (LRU)

* As done in scheduling can we use history as a guide?

* |ldea: If a page was referenced recently, it may be likely to be referenced again
* The historical information that page replacement can use: Frequency

 The more recently a page has been accessed, it should not be replaced soon
 LRU: replaces the least recently used page

 Works well due to locality of references (Temporal locality here)

29

Least Recently Used

* Consider access to a stream of Virtual pages: 0,1,2,0,1, 3,0, 3,1, 2, 1,

cache size: 3 pages

Access Hit/Miss? Evict Cache State
0 Miss 0
1 Miss 0O, 1
2 Miss 0,1,72
0 Hit 1,2,0
1 Hit LRU -> 2, 0, 1
3 Miss 2 LRU ->0,1,3
0 it LRU->1,3,0
3 it LRU->1,0,3
1 it LRU -> 0, 3, 1
2 Miss 0 LRU -> 3,1, 2
1 Hit LRU -> 3, 2, 1

30

Hits: 6/11

Implementing LRU

« How to implement policies like LRU?

 OS is not involved in every memory access - How does it know which page is
the least recently used?

 Hardware can help along with some approximations
 When a page is accessed, MMU can set the "accessed” bitto 1 in PTE
|t is the responsibility of OS to clear the bit

» How can the “accessed” bit be used by the OS to implement LRU?

31

Implementing LRU

 Simple and early approach, many approaches exist

 When replacement needs to be done, OS checks if
a page, P pointed to has use bit 1 or O

- If use bit is 1, set that to 0 and go to the next =%

page

e |f use bit is 0, that page becomes the victim for
This will

eviction e
0,

* Avoid repetitive scanning, not the optimal, still

works better Intially 1,

set to O
with sweep

* |Improved version makes use of dirty bit

32

Implementing LRU

* |f a page has been modified

* |t has to be pushed to disk and write to disk needs to be done

* |f not, if page Is clean, it can simply be replaced - overhead is less!
 Make use of a new bit - modified or dirty bit in the PTE

* |f a page has been recently modified -> dirty bit is set to

* |f the page is clean and not modified -> dirty bit is set to O
* Clock algorithm first scans for pages that are both unused and clean

* |f no page with both unused and clean status, evict unused and dirty pages

33

Thrashing

 What to do if the memory is oversubscribed?

 Memory demands of running processes
exceeds available physical memory

* System will be constantly paging -
Thrashing S:LIJ .

* One approach is admission control

* Try to run only a subset of processes
instead of trying to accommodate
everything

 More aggressive approach: Kill memory
iIntensive processes

34

// ng —>

De,gre,e, of mul‘t?pf‘ogf‘o\mming

V

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

35

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

