
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Concurrency - Introduction

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in three easy pieces by Remzi et al.

2

Course Outline

3

The Type of Process we have seen so far!
Some Recap

• Process during execution

• Program Counter (PC): Points to the current instruction
that is being run

• Stack Pointer (SP): Points to the current frame of the
function call

• What about the memory? - Paging!

• This is a single thread execution

• But in reality process is more than a single thread of
execution

4

In reality a process does more things!

5

Check the processes running in
your OS

Microsoft Word is a process, while
using it:
1. Spell checker works
2. Auto save happens
3. Auto formatting happens
4. ….

Think about a web server

• Web server runs a process to serve the clients

• Multiple clients may sent request to web
server at the same time

• If the process handles each client sequentially
- What can be an issue?

• How to make it more faster and better
performing?

• What mechanism do we need? - Does
multiple processes work?

6

An Analogy: Classrooms and Courses

This is very similar to two separate processes
7

An Analogy: What if two faculties teach one course?

8

• Can they teach at the same time?

• Imagine such a scenario :-D

• Each teacher may take turns

• They may be at the class at the same time as well!

• There is only one attendance sheet, one course ID,
one mark sheet

• Each faculty teaches in their style

• When question paper is set, they may take turns

• The respective course content may be different

• Somethings are shared!!

Process can have Threads!
• Thread: Another copy of the process that

executes independently (lightweight process)

• Threads share the same address space (code,
heap)

• Each thread:

• Has separate Program counter

• Separate stack for managing independent
function calls

• In single thread, it was just about one PC and one
stack

9

PC

PC

Wait, what about Process vs Threads?
Lets revisit parent and child - forks!
• What happens in a fork?

• Parent and Child do not share any memory

• Page tables are not shared, shared until changes - Copy on Write (CoW)

• Subtle variations exist to improve efficiency but essentially parent and
child are two different process

• What about exec? - Think!

• If they have to communicate, complicated inter process communication
needs to be done (sockets, pipes, etc)

• Extra copies of data, code, etc needs to be done
10

Threads
• Threads are another copy of process that executes

independently

• Any process (parent process) can have multiple threads

• Eg: Two threads T1 and T2

• Both share the same address space - No separate
page table, same code and same variables

• Communication happens through shared variables
(global)

• Smaller memory footprint

• Threads are like separate process but share same
address space

11

Why to do all these? Why Threads?

• Machine can be single core or multi-core:

• Single process can effectively use multiple or even single CPU cores

• Each thread can run independently and call different routines

• Multi-threaded program has more than one point of execution

• Within a process: one thread can perform I/O, one can perform
computation, etc.

• Scheduling happens between the threads - Parallelism?

12

Concurrency and Parallelism
What is what?

• =

13
Source: https://freecontent.manning.com/concurrency-vs-parallelism/

Concurrency Vs Parallelism
Concurrency is about dealing with lot of things at once while parallelism is doing lot of things at once

• Concurrency: Running multiple threads/processes at the same time, even on a
single CPU by interleaving their executions

• Parallelism: Running multiple threads/processes in parallel over different CPU
cores

• Concurrent computations can be parallelized without changing correctness of
result

• Concurrency by itself does not imply parallelism and vice versa

• Parallelism can be thought of as subclass of concurrency

14

Scheduling Threads

• OS schedules threads that are ready, similar to scheduling processes

• The context of thread (PC, registers) is saved into/restored from Thread Control Block
(TCB)

• Every PCB can have one or more linked TCBs corresponding to threads

• OS also has kernel level processes, each has threads - Kernel threads

• Kernel threads can perform various tasks - system calls, handling interrupts,
background tasks, etc. Execute in kernel mode. Eg: Linux pthreads

• User threads - managed by user level libraries. Execute in user mode

• Eg: POSIX threads, anything that need not be managed by kernel

15

16

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

