
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Concurrency - Introduction

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in three easy pieces by Remzi et al.

2

Course Outline

3

The Type of Process we have seen so far!
Some Recap

• Process during execution

• Program Counter (PC): Points to the current instruction
that is being run

• Stack Pointer (SP): Points to the current frame of the
function call

• What about the memory? - Paging!

• This is a single thread execution

• But in reality process is more than a single thread of
execution

4

In reality a process does more things!

5

Check the processes running in
your OS

Microsoft Word is a process, while
using it:
1. Spell checker works
2. Auto save happens
3. Auto formatting happens
4. ….

Think about a web server

• Web server runs a process to serve the clients

• Multiple clients may sent request to web
server at the same time

• If the process handles each client sequentially
- What can be an issue?

• How to make it more faster and better
performing?

• What mechanism do we need? - Does
multiple processes work?

6

An Analogy: Classrooms and Courses

This is very similar to two separate processes
7

An Analogy: What if two faculties teach one course?

8

• Can they teach at the same time?

• Imagine such a scenario :-D

• Each teacher may take turns

• They may be at the class at the same time as well!

• There is only one attendance sheet, one course ID,
one mark sheet

• Each faculty teaches in their style

• When question paper is set, they may take turns

• The respective course content may be different

• Somethings are shared!!

Process can have Threads!
• Thread: Another copy of the process that

executes independently (lightweight process)

• Threads share the same address space (code,
heap)

• Each thread:

• Has separate Program counter

• Separate stack for managing independent
function calls

• In single thread, it was just about one PC and one
stack

9

PC

PC

Wait, what about Process vs Threads?
Lets revisit parent and child - forks!
• What happens in a fork?

• Parent and Child do not share any memory

• Page tables are not shared, shared until changes - Copy on Write (CoW)

• Subtle variations exist to improve efficiency but essentially parent and
child are two different process

• What about exec? - Think!

• If they have to communicate, complicated inter process communication
needs to be done (sockets, pipes, etc)

• Extra copies of data, code, etc needs to be done
10

Threads
• Threads are another copy of process that executes

independently

• Any process (parent process) can have multiple threads

• Eg: Two threads T1 and T2

• Both share the same address space - No separate
page table, same code and same variables

• Communication happens through shared variables
(global)

• Smaller memory footprint

• Threads are like separate process but share same
address space

11

Why to do all these? Why Threads?

• Machine can be single core or multi-core:

• Single process can effectively use multiple or even single CPU cores

• Each thread can run independently and call different routines

• Multi-threaded program has more than one point of execution

• Within a process: one thread can perform I/O, one can perform
computation, etc.

• Scheduling happens between the threads - Parallelism?

12

Concurrency and Parallelism
What is what?

• =

13
Source: https://freecontent.manning.com/concurrency-vs-parallelism/

Concurrency Vs Parallelism
Concurrency is about dealing with lot of things at once while parallelism is doing lot of things at once

• Concurrency: Running multiple threads/processes at the same time, even on a
single CPU by interleaving their executions

• Parallelism: Running multiple threads/processes in parallel over different CPU
cores

• Concurrent computations can be parallelized without changing correctness of
result

• Concurrency by itself does not imply parallelism and vice versa

• Parallelism can be thought of as subclass of concurrency

14

Scheduling Threads

• OS schedules threads that are ready similar to scheduling processes

• The context of thread (PC, registers) is saved into/restored from Thread Control Block
(TCB)

• Every PCB can have one or more linked TCBs corresponding to threads

• OS also has kernel level processes, each has threads - Kernel threads

• Kernel threads can perform various tasks - system calls, handling interrupts,
background tasks, etc. Execute in kernel mode. Eg: Linux pthreads

• User threads - managed by user level libraries. Execute in user mode

• Eg: POSIX threads, anything that need not be managed by kernel

15

Creating a Thread

• POSIX provides interface for management of threads - pthread.h

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg)

• *thread: Pointer to pthread_t variable

• *attr: holds the attributes for new thread, stack size, scheduling policy, etc. NULL points to default

• *start_routine: Pointer to the function that will be executed by the thread upon execution

• Takes a single void parameters and returns void value

• *arg: Argument that will be passed to the start_routine function

• Returns 0 if thread successfully created

16

Some Interesting things to be considered

• Order of execution can be non deterministic

• Its hard to predict which thread executes first

• Two executions have two different sequence here!!

• So what could have happened?
17

An Ideal Trace

18

main Thread 1 Thread 2

Running

prints “Starting the threading

demo”

Creates T1

Creates T2

Waits for T1

Runs

Prints “thread 1”

Returns

Waits for T2
Runs

Prints “thread 2”

Returns

print “end”

This can also happen!

19

main Thread 1 Thread 2

Running

prints “Starting the threading demo”

Creates T1

Runs

Prints “thread 1”

Returns

Creates T2
 Runs

Prints “thread 2”

Returns
Waits for T1

Waits for T2

prints “end”

Shared Data - More Tricky

• Max size: 2000, assume global variable counter initialised to 0

• Desired final result: 4000!, even on a single processor system there is no guarantee

• Why does this happen?

20

Lets break the code down in assembly

counter = counter + 1

21

1. Load memory value to register eax

2. Increment the value in the register by 1

3. Move the value from register back to memory

What can happen?

22

OS Thread 1 Thread 2
Counter and Register

(Initial value of counter =
50

mov 0x8049a1c, %eax

add $0x1, %eax

eax = 51

counter = 50

interrupt
Save T1’ state

Restore T2’s state

mov 0x8049a1c, %eax

add $0x1, %eax

Mov %eax, 0x8049a1c
eax = 51

counter = 51

interrupt
Save T2’ state

Restore T1’s state

Race Condition and Critical Section

• Race Condition: Condition where

• Multiple threads executing concurrently and

• results depend on order of execution (time)

• Scheduler can swap threads, also interrupts

• Non-deterministic results

• Critical Section:

• The section of code that is shared between
the threads (leads to race conditions)

• Shared variables or data
23

Source: https://www.si.com/olympics/2016/07/14/usain-bolt-2016-rio-olympics

Concurrency is tricky!
Race conditions can result in fatal issues

24Source: https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Therac 25 Northeast Blackout of 2003, US
https://www.everydayshouldbesaturday.com/2018/8/14/17687734/flashback-the-blackout-of-2003

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Concurrency can be tricky!

25
Source: programmerhumor.io

http://programmerhumor.io

What can be done?
Bring in Atomicity

• What we want here is mutual exclusion!

• When one thread is accessing critical section,
others should wait

• No two threads should access critical section at
the same time

• In other words, atomicity needs to be provided

• What if there was one instruction in assembly:

• memory-add 0x8049a1c, &0x1 - Reality is not
this!!

26

This should execute atomically!!

What we need?

• Need to build synchronization primitives

• Hardware + software support

• Ensure that critical section is accessed in synchronised and controlled manner

• One part: Build some primitives for synchronisation

• This will ensure atomicity (avoid race conditions)

• Second part: Ensure every thread gets access!

• No one should starve

27

Some Issues needs to be addressed

• What support do we need from hardware?

• What support is needed from software?

• How to build primitives correctly and effectively?

• How can programs use these primitives?

28

29

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

