CS3.301 Operating Systems
and Networks

Concurrency - Locks

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

‘.] ; ..) INTERNATIONAL INSTITUTE OF

INFORMATION TECHNOLOGY

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems 1n three easy pieces by Remzi et al.

Creating a Thread

 POSIX provides interface for management of threads - pthread.h
int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void *), void *arg)
* *thread: Pointer to pthread_t variable
e *attr: holds the attributes for new thread, stack size, scheduling policy, etc. NULL points to default
* *start_routine: Pointer to the function that will be executed by the thread upon execution
* Jakes a single void parameters and returns void value
* *arg: Argument that will be passed to the start_routine function

* Returns O if thread successfully created

Some Interesting things to be considered

Starting the threading demo
thread 1

void xworker thread(void thread 2

{ end

printf("%ss\n", (char x) 3 , ,
Starting the threading demo

thread 2
thread 1
end

* Order of execution can be non deterministic
 |ts hard to predict which thread executes first
 Two executions have two different sequence here!!

* So what could have happened?

An Ildeal Trace

Running
prints “Starting the threading
demo”
Creates T1
Creates T2
Waits for T

Runs
Prints “thread 1”
Returns

Runs
Waits for T2 Prints “thread 2”
Returns

print “end”

This can also happen!

Running
prints “Starting the threading demo”
Creates T

Runs
Prints “thread 1”
Returns

Creates T2
Runs

Prints “thread 2”
Returns

Waits for T1
Waits for T2
prints “end”

Shared Data - More Tricky

void skworker_thread(void xarqg)

; Inital value of the counter 0

. . Final value of the counter 4000
int index:;

for (index =0; index<max_index; index++)

{

counter++;

Inital value of the counter 0
Final value of the counter 3790

¥

 Max size: 2000, assume global variable counter initialised to O
* Desired final result: 4000!, even on a single processor system there is no guarantee

 Why does this happen?

Lets break the code down In assembly

counter = counter + 1

rmov Ox¥049alc, °7°eox>)

add L0, Toeax
moV Toeax, OxB049al
_ J

1. Load memory value to register eax

2. Increment the value in the register by 1

3. Move the value from register back to memory

What can happen?

mov 0x8049a1c, %eax
add $0x1, %eax

eax = 51
counter = 50

Interrupt
Save T1’ state
Restore T2’s state

mov 0x8049al1c, %eax
add $0x1, %eax
Mov %eax, 0x8049alc

eax = 51
counter = 51

interrupt
Save T2’ state
Restore T1’s state

Race Condition and Critical Section

e Race Condition: Condition where

* Multiple threads executing concurrently and

* results depend on order of execution (time)
 Scheduler can swap threads, also interrupts
* Non-deterministic results

 Critical Section:

* The section of code that is shared between
the threads (leads to race conditions)

Source: https://www.si.com/olympics/2016/07/14/usain-bolt-2016-rio-olympics

 Shared variables or data

10

Concurrency is tricky!

Race conditions can result in fatal issues

....

Therac 25 Northeast Blackout of 2003, US

https://www.everydayshouldbesaturday.com/2018/8/14/17687734/flashback-the-blackout-of-2003

Source: https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/ B

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Concurrency can be tricky!

@) * -
7"’ A‘—,- - ": -~ 2 e @ - - > n—nnﬁry
. =4

Pl Sille daeiiey fen 2L s etl s -_—.’;u,éd,

I've only been writissqftware for 15 years

i

Can someone explain how concurrency
and multithreading is done?

"W\ =)

12
Source: programmerhumor.io

http://programmerhumor.io

What can be done?
Bring in Atomicity

e What we want here is mutual exclusion!
~ B

« When one thread is accessing critical section, mov Ox809%ale; Toeax
others should wait add L0x1, Toeasx

* No two threads should access critical section at moV %e“xl 0x¥04%a
the same time _ J

» In other words, atomicity needs to be provided This should execute atomically:!

 What if there was one instruction in assembly:

« memory-add 0x8049a1c, &0x1 - Reality is not
this!!

13

What we need?

 Need to build synchronization primitives

 Hardware + software support

* Ensure that critical section is accessed in synchronised and controlled manner
* One part: Build some primitives for synchronisation

* This will ensure atomicity (avoid race conditions)
* Second part: Ensure every thread gets access!

e No one should starve

14

Some Issues needs to be addressed

 What support do we need from hardware?

 What support is needed from software”?

* How to build primitives correctly and effectively?

 How can programs use these primitives?

15

Locks: A Basic Ildea

* |ets go back to the shared variable code in Critical Section (CS):

counter = counter + 1

 What if we can have a lock surrounding the statement

lock_t mutex;

Llock (&mutex);
counter = counter +
unlock (&mutex);

)

16

What are locks?

| ock here Is just a variable
* The lock variable holds the state of lock at any instant of time
e |tis either available (free) or acquired:
* Available: No threads hold the lock
 Acquired: Lock not available, one thread is holding it and in CS

e We can also enrich with more information - which thread holds the lock,
create a queue for threads to get locks, etc.

17

Lock and Unlock

* The thread that holds the lock - Owner
* Owner needs to call unlock to free the lock
 The lock becomes free
* There may be threads waiting for the lock, one of them will acquire it
* The next thread with lock enters CS
 When no thread is waiting for the lock, the lock stays as free

« How to go about building a lock?

18

How to go about building a lock?

e Think about classrooms and locks

* |In the physical locks itself there are
many options

 Many hardware primitives have been
added to instruction set architecture to

support locks

 [he way in which the primitives are
used + OS support forms the key

Image generated using stable diffusion 19

Criteria to evaluate

 Mutual Exclusion

* Does the lock prevent multiple threads from entering CS at same time?
 Fairness

* Does each thread get a fair chance to enter into the CS? - Avoid starvation!!
 Performance

 When there is only one thread what is the overhead?

* Multiple threads on single CPU - What about overhead?

* Multiple threads on multiple CPU - What’s are overhead?

20

Why threading is challenging?

* [wo threads running at the same time

* Interrupts - Can we disable interrupt inside a lock??
0

vold Llock()

{
DisableInterrupts();

) Main positive approach is simplicity

vold unlock()

{
EnableInterrupt();

}

Are there any issues?

21

There are Negatives

* [Thread gets a very high privilege

 Thread can switch on and off the interrupts

* Arbitrary thread can monopolize the processor

* Errant program could call lock() and get into endless loop
 [he approach does not work on multiple processor systems

 Even If interrupts are disabled, other threads can run on different processor
* |Inefficiency: Code that masks or unmasks interrupts are executed slowly

* |nterrupt control is used in limited context as mutual exclusion primitive (inside
0S)

22

Can we try with a software lock?

00 Software based lock

typedef struct __ lock_ t
{

int flag; Use software based locking mechanism
y lock_t;

void init (lock_t *mutex) Create a lock which has a flag value
{

mutex -> flag = 0;

) Every time a thread wants to enter CS

vold lock(lock t *mutex)

; * Invoke lock function, if flag = 1, wait for
while(mutex->flag==1) the lock to be available

mutex -> flag = 1;

} * Else acquire the lock and enter CS

void unlock (lock_t *mutex) Do you foresee some problem here?
{

mutex->flag = 0;

}

23

Simple Trace

Call lock()
while (flag== 1)
Interrupt to Thread 2

Call lock()
While (flag==1)
flag = 1;
Interrupt to thread 1

flag = 1

 No mutual exclusion - Both threads have flag set to 1

* Performance overhead due to spin-waiting

Working Spin Lock with Test-And-Set

Test and Set Instruction

- N N Test and Set Lock

tnt TestAndSet(int *ptr, int new)
{

int old = *ptr; C Pseudocode
*ptr = new;

return old;

}

* Simplest hardware primitive - test-and-set or atomic exchange instruction
* Sequence of instructions executed atomically
* Enables testing of old values while setting the main to a new value

* Think about implementing a CS code with this lock!

Implementing using Test and Set Lock

900 Using TestAndSet Lock

typedef struct __ lock_t
{

int flag
} lock_t;

vold init (lock t *lock)

{
lock -> flag = 0;

}

vold lock (lock t *lock)

{
while (TestAndSet(&lock-> flag,

}

vold unlock (lock t *lock)

{
lock -> flag = 0;

}

(/

&

while (TestAndSe,’t(&lock-)Plo\glﬂ) == 1)

N

When 1

/

Other thread has ‘the,\

l\cl;ck .

63 22
K eep Spmr\imj

& Y,

26

o
iy
wWhen O
6 \)
No thread has the lock
& \lb o
2 2)
Sets the value to 1
& 5y

Only one thread can acquire the lock

Evaluating Spin Locks

 Correctness perspective Provides mutual exclusion, so correct!

 Fairness perspective
* They don’t provide fairness guarantee

* Threads can keep spinning forever leading to starvation

 Performance perspective

* |In single CPU - significant overhead, What if thread holding the lock is
preempted in critical section”? - Run all N-1 threads to waste CPU

* On multiple CPUs these locks work reasonably well (esp if n. Threads ~ n. CPUs)

27

Compare-And-Swap

Another Hardware Primitive

C Pseudocode
e Basic idea: Test whether the value at

address specified by ptr is equal to

tnt CompareAndSwap(int *ptr, int expected, int new) expected
{

900 Compare-And-Swap

int actual = *ptr;

if (actual == expected) |f yes, update the memory location

{ *ptr = new; pointed to ptr by new value
}

return actual;

* |f not, do nothing!

e |n either case, return actual value at the

Inside the lock function the call will be: :
memory location

e
wh le_(C ompo\PeAndSwo\p(& lock-*lo\g, O ,1) ='-=1)
_ 5

28

Load-Linked and Store-Conditional (LL SC)

* |In MIPS architecture, they can be used in tandem to build locks and
concurrent structures

® 0 Store Conditional
® 0 Load Linked

tnt StoreConditional(int *ptr, int value)
{

Lf (no one has updated ptr since load linked)

{

*ptr = value;

int LoadLinked (int *ptr)

1

return *ptr;

}

return

}

else

{

return

}

)

)

C Pseudocode !

29

LL/SC for building locks

| oad linked is like a typical load
operation

900 LL/SC for building locks

vold lock(lock t *lock)
_ {
o Simply fetches a value from memory while (1)

‘s : {
and places It INn a reglster while (LoadLinked(&lock->flag)==1)

e Store conditional succeeds if no if (StoreConditional(&lock->flag,1)==1)

intermittent store to address has taken {
place

return;

* |n case of success, It updates ptr to
value and returns 1 else returns O

vold unlock(lock t *lock)
{

When does failure condition of store } lock->flag = 0;
conditional arise?

30

What about Fairness?

Can we incorporate fairness through locks?

e 4 "
vy .l) &4
» .
- P > = : b
.- < B, £ o . v :
» e ot ..) "
y ,‘,' e’ &
. . e oy . .
f : 4 S : - e S .
F 4 . eudi - t Tl

* Lock only has a flag variable
* Every time a thread acquires, it checks for flag
 However, which threads are checking is not recorded

* The threads that are looking for locks may have to be
stored somewhere

e Can we store more information within each lock?

31

What if we leverage Turns and Tickets

Think about going to some crowded office space

'

d

TICKET WINDOW

Current Number and Window

http://juvale.com

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

33

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

