
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Concurrency - Locks

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in three easy pieces by Remzi et al.

2

Creating a Thread

• POSIX provides interface for management of threads - pthread.h

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine)(void *), void *arg)

• *thread: Pointer to pthread_t variable

• *attr: holds the attributes for new thread, stack size, scheduling policy, etc. NULL points to default

• *start_routine: Pointer to the function that will be executed by the thread upon execution

• Takes a single void parameters and returns void value

• *arg: Argument that will be passed to the start_routine function

• Returns 0 if thread successfully created

3

Some Interesting things to be considered

• Order of execution can be non deterministic

• Its hard to predict which thread executes first

• Two executions have two different sequence here!!

• So what could have happened?
4

An Ideal Trace

5

main Thread 1 Thread 2

Running

prints “Starting the threading

demo”

Creates T1

Creates T2

Waits for T1

Runs

Prints “thread 1”

Returns

Waits for T2
Runs

Prints “thread 2”

Returns

print “end”

This can also happen!

6

main Thread 1 Thread 2

Running

prints “Starting the threading demo”

Creates T1

Runs

Prints “thread 1”

Returns

Creates T2
 Runs

Prints “thread 2”

Returns
Waits for T1

Waits for T2

prints “end”

Shared Data - More Tricky

• Max size: 2000, assume global variable counter initialised to 0

• Desired final result: 4000!, even on a single processor system there is no guarantee

• Why does this happen?

7

Lets break the code down in assembly

counter = counter + 1

8

1. Load memory value to register eax

2. Increment the value in the register by 1

3. Move the value from register back to memory

What can happen?

9

OS Thread 1 Thread 2
Counter and Register

(Initial value of counter =
50

mov 0x8049a1c, %eax

add $0x1, %eax

eax = 51

counter = 50

interrupt
Save T1’ state

Restore T2’s state

mov 0x8049a1c, %eax

add $0x1, %eax

Mov %eax, 0x8049a1c
eax = 51

counter = 51

interrupt
Save T2’ state

Restore T1’s state

Race Condition and Critical Section

• Race Condition: Condition where

• Multiple threads executing concurrently and

• results depend on order of execution (time)

• Scheduler can swap threads, also interrupts

• Non-deterministic results

• Critical Section:

• The section of code that is shared between
the threads (leads to race conditions)

• Shared variables or data
10

Source: https://www.si.com/olympics/2016/07/14/usain-bolt-2016-rio-olympics

Concurrency is tricky!
Race conditions can result in fatal issues

11Source: https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Therac 25 Northeast Blackout of 2003, US
https://www.everydayshouldbesaturday.com/2018/8/14/17687734/flashback-the-blackout-of-2003

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/

Concurrency can be tricky!

12
Source: programmerhumor.io

http://programmerhumor.io

What can be done?
Bring in Atomicity

• What we want here is mutual exclusion!

• When one thread is accessing critical section,
others should wait

• No two threads should access critical section at
the same time

• In other words, atomicity needs to be provided

• What if there was one instruction in assembly:

• memory-add 0x8049a1c, &0x1 - Reality is not
this!!

13

This should execute atomically!!

What we need?

• Need to build synchronization primitives

• Hardware + software support

• Ensure that critical section is accessed in synchronised and controlled manner

• One part: Build some primitives for synchronisation

• This will ensure atomicity (avoid race conditions)

• Second part: Ensure every thread gets access!

• No one should starve

14

Some Issues needs to be addressed

• What support do we need from hardware?

• What support is needed from software?

• How to build primitives correctly and effectively?

• How can programs use these primitives?

15

Locks: A Basic Idea

• Lets go back to the shared variable code in Critical Section (CS):

• What if we can have a lock surrounding the statement

counter = counter + 1

16

What are locks?

• Lock here is just a variable

• The lock variable holds the state of lock at any instant of time

• It is either available (free) or acquired:

• Available: No threads hold the lock

• Acquired: Lock not available, one thread is holding it and in CS

• We can also enrich with more information - which thread holds the lock,
create a queue for threads to get locks, etc.

17

Lock and Unlock

• The thread that holds the lock - Owner

• Owner needs to call unlock to free the lock

• The lock becomes free

• There may be threads waiting for the lock, one of them will acquire it

• The next thread with lock enters CS

• When no thread is waiting for the lock, the lock stays as free

• How to go about building a lock?

18

How to go about building a lock?

• Think about classrooms and locks

• In the physical locks itself there are
many options

• Many hardware primitives have been
added to instruction set architecture to
support locks

• The way in which the primitives are
used + OS support forms the key

19Image generated using stable diffusion

Criteria to evaluate

• Mutual Exclusion

• Does the lock prevent multiple threads from entering CS at same time?

• Fairness

• Does each thread get a fair chance to enter into the CS? - Avoid starvation!!

• Performance

• When there is only one thread what is the overhead?

• Multiple threads on single CPU - What about overhead?

• Multiple threads on multiple CPU - What’s are overhead?
20

Why threading is challenging?

• Two threads running at the same time

• Interrupts - Can we disable interrupt inside a lock?

21

Main positive approach is simplicity

Are there any issues?

There are Negatives
• Thread gets a very high privilege

• Thread can switch on and off the interrupts

• Arbitrary thread can monopolize the processor

• Errant program could call lock() and get into endless loop

• The approach does not work on multiple processor systems

• Even if interrupts are disabled, other threads can run on different processor

• Inefficiency: Code that masks or unmasks interrupts are executed slowly

• Interrupt control is used in limited context as mutual exclusion primitive (inside
OS)

22

Can we try with a software lock?

• Use software based locking mechanism

• Create a lock which has a flag value

• Every time a thread wants to enter CS

• Invoke lock function, if flag = 1, wait for
the lock to be available

• Else acquire the lock and enter CS

• Do you foresee some problem here?

23

Simple Trace

• No mutual exclusion - Both threads have flag set to 1

• Performance overhead due to spin-waiting
24

Thread 1 Thread 2

Call lock()
while (flag== 1)

Interrupt to Thread 2

Call lock()
While (flag==1)

flag = 1;
Interrupt to thread 1

flag = 1

Working Spin Lock with Test-And-Set
Test and Set Instruction

• Simplest hardware primitive - test-and-set or atomic exchange instruction

• Sequence of instructions executed atomically

• Enables testing of old values while setting the main to a new value

• Think about implementing a CS code with this lock!
25

C Pseudocode

Implementing using Test and Set Lock

26

Only one thread can acquire the lock

Evaluating Spin Locks

• Correctness perspective Provides mutual exclusion, so correct!

• Fairness perspective

• They don’t provide fairness guarantee

• Threads can keep spinning forever leading to starvation

• Performance perspective

• In single CPU - significant overhead, What if thread holding the lock is
preempted in critical section? - Run all N-1 threads to waste CPU

• On multiple CPUs these locks work reasonably well (esp if n. Threads ~ n. CPUs)

27

Compare-And-Swap
Another Hardware Primitive

• Basic idea: Test whether the value at
address specified by ptr is equal to
expected

• If yes, update the memory location
pointed to ptr by new value

• If not, do nothing!

• In either case, return actual value at the
memory location

28

Inside the lock function the call will be:

C Pseudocode

Load-Linked and Store-Conditional (LL SC)

• In MIPS architecture, they can be used in tandem to build locks and
concurrent structures

29

C Pseudocode

LL/SC for building locks

30

• Load linked is like a typical load
operation

• Simply fetches a value from memory
and places it in a register

• Store conditional succeeds if no
intermittent store to address has taken
place

• In case of success, it updates ptr to
value and returns 1 else returns 0

When does failure condition of store
conditional arise?

What about Fairness?
Can we incorporate fairness through locks?

31

• Lock only has a flag variable

• Every time a thread acquires, it checks for flag

• However, which threads are checking is not recorded

• The threads that are looking for locks may have to be
stored somewhere

• Can we store more information within each lock?

What if we leverage Turns and Tickets
Think about going to some crowded office space

32
Source: juvale.com

http://juvale.com

33

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

