
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Concurrency - Locks

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in three easy pieces by Remzi et al.

2

Concurrency can be tricky!

3
Source: programmerhumor.io

http://programmerhumor.io

What can happen?

4

OS Thread 1 Thread 2
Counter and Register

(Initial value of counter =
50

mov 0x8049a1c, %eax

add $0x1, %eax

eax = 51

counter = 50

interrupt
Save T1’ state

Restore T2’s state

mov 0x8049a1c, %eax

add $0x1, %eax

Mov %eax, 0x8049a1c
eax = 51

counter = 51

interrupt
Save T2’ state

Restore T1’s state

Race Condition and Critical Section

• Race Condition: Condition where

• Multiple threads executing concurrently and

• results depend on order of execution (time)

• Scheduler can swap threads, also interrupts

• Non-deterministic results

• Critical Section:

• The section of code that is shared between
the threads (leads to race conditions)

• Shared variables or data
5

Source: https://www.si.com/olympics/2016/07/14/usain-bolt-2016-rio-olympics

What can be done?
Bring in Atomicity

• What we want here is mutual exclusion!

• When one thread is accessing critical section,
others should wait

• No two threads should access critical section at
the same time

• In other words, atomicity needs to be provided

• What if there was one instruction in assembly:

• memory-add 0x8049a1c, &0x1 - Reality is not
this!!

6

This should execute atomically!!

What we need?

• Need to build synchronization primitives

• Hardware + software support

• Ensure that critical section is accessed in synchronised and controlled manner

• One part: Build some primitives for synchronisation

• This will ensure atomicity (avoid race conditions)

• Second part: Ensure every thread gets access!

• No one should starve

7

Some Issues needs to be addressed

• What support do we need from hardware?

• What support is needed from software?

• How to build primitives correctly and effectively?

• How can programs use these primitives?

8

Locks: A Basic Idea

• Lets go back to the shared variable code in Critical Section (CS):

• What if we can have a lock surrounding the statement

counter = counter + 1

9

What are locks?

• Lock here is just a variable

• The lock variable holds the state of lock at any instant of time

• It is either available (free) or acquired:

• Available: No threads hold the lock

• Acquired: Lock not available, one thread is holding it and in CS

• We can also enrich with more information - which thread holds the lock,
create a queue for threads to get locks, etc.

10

Lock and Unlock

• The thread that holds the lock - Owner

• Owner needs to call unlock to free the lock

• The lock becomes free

• There may be threads waiting for the lock, one of them will acquire it

• The next thread with lock enters CS

• When no thread is waiting for the lock, the lock stays as free

• How to go about building a lock?

11

How to go about building a lock?

• Think about classrooms and locks

• In the physical locks itself there are
many options

• Many hardware primitives have been
added to instruction set architecture to
support locks

• The way in which the primitives are
used + OS support forms the key

12Image generated using stable diffusion

Criteria to evaluate

• Mutual Exclusion

• Does the lock prevent multiple threads from entering CS at same time?

• Fairness

• Does each thread get a fair chance to enter into the CS? - Avoid starvation!!

• Performance

• When there is only one thread what is the overhead?

• Multiple threads on single CPU - What about overhead?

• Multiple threads on multiple CPU - What’s are overhead?
13

Why threading is challenging?

• Two threads running at the same time

• Interrupts - Can we disable interrupt inside a lock?

14

Main positive approach is simplicity

Are there any issues?

There are Negatives
• Thread gets a very high privilege

• Thread can switch on and off the interrupts

• Arbitrary thread can monopolize the processor

• Errant program could call lock() and get into endless loop

• The approach does not work on multiple processor systems

• Even if interrupts are disabled, other threads can run on different processor

• Inefficiency: Code that masks or unmasks interrupts are executed slowly

• Interrupt control is used in limited context as mutual exclusion primitive (inside
OS)

15

Can we try with a software lock?

• Use software based locking mechanism

• Create a lock which has a flag value

• Every time a thread wants to enter CS

• Invoke lock function, if flag = 1, wait for
the lock to be available

• Else acquire the lock and enter CS

• Do you foresee some problem here?

16

Simple Trace

• No mutual exclusion - Both threads have flag set to 1

• Performance overhead due to spin-waiting
17

Thread 1 Thread 2

Call lock()
while (flag== 1)

Interrupt to Thread 2

Call lock()
While (flag==1)

flag = 1;
Interrupt to thread 1

flag = 1

Working Spin Lock with Test-And-Set
Test and Set Instruction

• Simplest hardware primitive - test-and-set or atomic exchange instruction

• Sequence of instructions executed atomically

• Enables testing of old values while setting the main to a new value

• Think about implementing a CS code with this lock!
18

C Pseudocode

Implementing using Test and Set Lock

19

Only one thread can acquire the lock

Evaluating Spin Locks

• Correctness perspective Provides mutual exclusion, so correct!

• Fairness perspective

• They don’t provide fairness guarantee

• Threads can keep spinning forever leading to starvation

• Performance perspective

• In single CPU - significant overhead, What if thread holding the lock is
preempted in critical section? - Run all N-1 threads to waste CPU

• On multiple CPUs these locks work reasonably well (esp if n. Threads ~ n. CPUs)

20

Compare-And-Swap
Another Hardware Primitive

• Basic idea: Test whether the value at
address specified by ptr is equal to
expected

• If yes, update the memory location
pointed to ptr by new value

• If not, do nothing!

• In either case, return actual value at the
memory location

21

Inside the lock function the call will be:

C Pseudocode

Load-Linked and Store-Conditional (LL SC)

• In MIPS architecture, they can be used in tandem to build locks and
concurrent structures

22

C Pseudocode

LL/SC for building locks

23

• Load linked is like a typical load
operation

• Simply fetches a value from memory
and places it in a register

• Store conditional succeeds if no
intermittent store to address has taken
place

• In case of success, it updates ptr to
value and returns 1 else returns 0

When does failure condition of store
conditional arise?

What about Fairness?
Can we incorporate fairness through locks?

24

• Lock only has a flag variable

• Every time a thread acquires, it checks for flag

• However, which threads are checking is not recorded

• The threads that are looking for locks may have to be
stored somewhere

• Can we store more information within each lock?

What if we leverage Turns and Tickets
Think about going to some crowded office space

25
Source: juvale.com

http://juvale.com

Fetch and Add
Yet another hardware primitive but very powerful

• Atomically increment a value while
returning the old value at a particular
address

• Used to build interesting type of lock -
The ticket lock

• Instead of single variable a combination
of ticket and turn variable is used

• Not just flag: ticket and turn

26

Ticket Lock

27

An Illustration of Ticket Lock

28Source: wikipedia article on ticket lock

How good is the spin based locks?
• Simple hardware based locks are simple to implement and powerful

• They are also quite inefficient especially when it comes to performance

• Consider that there are two threads and one thread has the lock

• When thread has lock, it may get interrupted, the other thread spins for a time
slice, waste CPU cycle

• Think about N threads, N-1 threads might waste CPU cycles in spinning (especially
if round robin)

• Can we come up with something better instead of wasting cycles with spinning?

29

30

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

