
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Concurrency - Condition Variables

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in three easy pieces by Remzi et al.

2

What if we leverage Turns and Tickets
Think about going to some crowded office space

3
Source: juvale.com

http://juvale.com

Fetch and Add
Yet another hardware primitive but very powerful

• Atomically increment a value while
returning the old value at a particular
address

• Used to build interesting type of lock -
The ticket lock

• Instead of single variable a combination
of ticket and turn variable is used

• Not just flag: ticket and turn

4

Ticket Lock

5

An Illustration of Ticket Lock

6Source: wikipedia article on ticket lock

How good is the spin based locks?
• Simple hardware based locks are simple to implement and powerful

• They are also quite inefficient especially when it comes to performance

• Consider that there are two threads and one thread has the lock

• When thread has lock, it may get interrupted, the other thread spins for a time
slice, waste CPU cycle

• Think about N threads, N-1 threads might waste CPU cycles in spinning (especially
if round robin)

• Can we come up with something better instead of wasting cycles with spinning?

7

OS support can help
The yield call

• If the thread is aware that it is going to spin - Why not give up the CPU to some
other thread?

• Simple OS primitive system call: yield()

• Moves the thread from running state to ready state => another thread can run

• Does this solution work efficiently?

• What if there are 100 threads?

• Still costly! - 99 threads runs to yield

• Possibility of infinite yields as well - Starvation! - Why?

8

Inside the lock routine

Can we make thread sleep rather than spinning?

• Why don’t we make use of some queue based structures?

• Keep a queue to track which thread needs access to CS

• Syscalls by Solaris: park() and unpark()

• park(): puts a thread to sleep

• unpark(tid): wakeup that particular thread

• If a thread wants to acquire a lock

• Check if others have the lock, if yes put thread to sleep

• If lock is free, wake up the thread and give the lock
9

Locks do help in access to CS! But more challenges
• Locks ensures that thread can get access to CS

• With help of HW and SW mechanisms
efficient locks can be built

• But, thread while executing may want to check
for some conditions

• A parent thread may want to check if the child
thread has completed before proceeding

• Remember join() operation? - How to make
it work?

• Why don’t we use shared variable?

10

Condition Variables
• Condition variable: Explicit queues that the threads can put themselves on when

a state of condition is not as desired

• Eg: lock is not available (flag might be 0)

• When condition is met, thread can be woken up to continue

pthread_cond_t c;

• c is a condition variable with two operations - wait() and signal()

• wait(): when thread wants to put itself to sleep

• signal(): there is some change and thread wants to wake up thread waiting on
condition

11

Condition Variables in Action

12

Two cases to consider as it works

• Parent creates the Child and continues running

• Goes into the join call

• Checks the state variable since child is not done, puts itself to sleep

• Child runs and invokes exit -> updates state variable and wakes up parent thread

• Parent will run returning from wait and prints done

• Child runs immidiately upon creation

• Sets done to 1, wakes up sleeping thread (none available) so returns

• Parent runs join, the done variable is 1 so returns

• Do we need while loop for checking state and do we need locks?
13

State variable and Locks

• What if we don’t have the state variable done

• Exit and join functions simply calls wait and join

• What if child runs first and calls exit, child will signal but no parent thread

• When parent runs, it will simply wait and never come out of it

• What if there are no locks around statements in exit and join?

• Parent calls join, checks that done is 0, sleeps

• Just before sleep call, interrupt, child runs and sets done to 1 and signals

• No thread is waiting, parent runs goes into sleep and forever sleeps - Race
condition

14

An Analogy

15

One cannot get food items that are not yet ready!

The Producer/Consumer Problem
AKA Bounded Buffer Problem
• Think about web servers

• Producer: Produces HTTP requests into a queue

• Consumer: The threads that process the HTTP requests from the queue

• Bounded buffer: The work queue

• Piped calls in unix: grep linux os.txt | wc -l

• Producer: grep gets text that contains “linux” from os.txt and puts them to standard
output

• Consumer: Shell redirects them to pipe call, where wc as another process counts and
prints the number of lines

• Buffer: Shared resource
16

Wait There is a challenge

• Bounded buffer is a shared resource

• Producer puts data to empty buffer

• Consumer can only consume from full buffer

• We need synchronisation mechanisms to access it

• Else it may result in race conditions

• How to solve the problem?

• What kind of synchronisation mechanisms can be developed?

17

18

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

