CS3.301 Operating Systems
and Networks

Concurrency - Condition Variables

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

‘. ] ; .. ) INTERNATIONAL INSTITUTE OF

INFORMATION TECHNOLOGY



https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems 1n three easy pieces by Remzi et al.



How good is the spin based locks?

o Simple hardware based locks are simple to implement and powerful
 They are also quite inefficient especially when it comes to performance
» Consider that there are two threads and one thread has the lock

 When thread has lock, it may get interrupted, the other thread spins for a time
slice, waste CPU cycle

* Think about N threads, N-1 threads might waste CPU cycles in spinning (especially
if round robin)

« Can we come up with something better instead of wasting cycles with spinning?



OS support can help

The yield call

* |f the thread is aware that it is going to spin - Why not give up the CPU to some
other thread?

o Simple OS primitive system call: yield()

 Moves the thread from running state to ready state => another thread can run

* Does this solution work efficiently? G 2
while (TestAndSet(&lock->Flag,) == 1)
 What if there are 100 threads? ¢
yield 0;
» Still costly! - 99 threads runs to yield Q MEHR L B i

* Possibility of infinite yields as well - Starvation! - Why?

4



Can we make thread sleep rather than spinning?

 Why don’t we make use of some queue based structures?
» Keep a queue to track which thread needs access to CS
» Syscalls by Solaris: park() and unpark()
* park(): puts a thread to sleep
* unpark(tid): wakeup that particular thread
e |f a thread wants to acquire a lock
 Check if others have the lock, if yes put thread to sleep

* |f lock is free, wake up the thread and give the lock

5



Locks do help in access to CS! But more challenges

 Locks ensures that thread can get access 10 CS ARt hubtbl

int done = 0;

e With help of HW and SW mechanisms

volid *child (voild *arq)

efficient locks can be built (
printf (" child\n");
: : d = 13
 But, thread while executing may want to check .

for some conditions ;

int main (int argc, char *argv|[])

* A parent thread may want to check if the child | e

thread has completed before proceeding pthread_t c;
pthread_create(&c,
.. . hile (d == ()

e Remember join() operation? - How to make [—"

it work?

} )
printf (" done \n");
 Why don’t we use shared variable? return 03

6



Condition Variables

 Condition variable: Explicit gueues that the threads can put themselves on when
a state of condition is not as desired

* Eg: lock is not available (flag might be 0)
 When condition is met, thread can be woken up to continue
pthread_cond t c;
e CIs a condition variable with two operations - wait() and signal()
» wait(): when thread wants to put itself to sleep

» signal(): there is some change and thread wants to wake up thread waiting on
condition



Condition Variables in Action

int done = 0; void thread_join()
pthread_mutex_t m PTHREAD _MUTEX_INITIALIZER; {

pthread _cond_t c 'THREAD COND TIALIZER; pthread_mutex_lock(&m);
while (done == 0)

void thread exit() .

{

thread_cond_wait(&c,&m) ;
pthread_mutex_Tlock(&m); } P B _

done = 1;
pthread_cond_signal(&c);
pthread_mutex_unlock(&m) ;

pthread_mutex_unlock(&nm);

main (int , char sx 1)

void xworker_thread(void x pthread_t thread_p1l;
{ printf("Starting parent thread \n");

. L e pthread_create(&thread_pl, NULL, worker_thread, NULL);
LA thread_join();

thread_exit(); printf("Parent: end\n");
return NULL; return 0;




Two cases to consider as 1t works

 Parent creates the Child and continues running
* Goes into the join call
 Checks the state variable since child is not done, puts itself to sleep
 Child runs and invokes exit -> updates state variable and wakes up parent thread
* Parent will run returning from wait and prints done
e Child runs immidiately upon creation
» Sets done to 1, wakes up sleeping thread (none available) so returns
 Parent runs join, the done variable is 1 so returns

Do we need while loop for checking state and do we need locks?

9



State variable and Locks

 What if we don’t have the state variable done
* EXit and join functions simply calls wait and join
 What if child runs first and calls exit, child will signhal but no parent thread
 When parent runs, it will simply wait and never come out of it
« What if there are no locks around statements in exit and join?
 Parent calls join, checks that done is O, sleeps
» Just before sleep call, interrupt, child runs and sets done to 1 and signals

* No thread is waiting, parent runs goes into sleep and forever sleeps - Race
condition

10



An Analogy

/

chef prepares food Prepared items ”

\‘ 88

orders form counter

One cannot get food items that are not yet ready!

11



The Producer/Consumer Problem
AKA Bounded Buffer Problem

e Think about web servers

* Producer: Produces HT TP requests into a queue
 Consumer: The threads that process the HTTP requests from the queue
 Bounded buffer: The work queue

* Piped calls in unix: grep linux os.txt | wc -l

* Producer: grep gets text that contains “linux” from os.txt and puts them to standard
output

 Consumer: Shell redirects them to pipe call, where wc as another process counts and
prints the number of lines

 Buffer: Shared resource

12



Wait There Is a challenge

 Bounded buffer is a shared resource

* Producer puts data to empty buffer

 Consumer can only consume from full buffer

* We need synchronisation mechanisms to access it
* Else it may result in race conditions

 How to solve the problem?

 What kind of synchronisation mechanisms can be developed?

13



Lets start simple

* Consider buffer can hold only one item, a single integer - How to solve?

® Producer-Consumer-GetAndPut ® Producer-Consumer

b (YA vold *producer (voild *arg)
{

int 1;
_ tnt maxLoops = (int) arg;
int get() (1=0; i<maxLoops; i++)
{ {
assert(count==1); put(i);
count = 0; }
buffer; ;

; int *consumer(voild *arg)

{
void put (int value) int value;

{ (1)
assert (count==0); {
buffer = value; value = get();
count = 1; printf("%sd\n", value);

}
; }

1int count




Surround with Locks and Condition Variables

Only one producer and one consumer

& Producer @ Consumer

cond_t cond;

cond t cond;
o i mutex_t mutex;

mutex_T mutex;

: : vold *consumer(voulid *ar
vold *producer(void *arg) ; ( 9)

{ int 1;
int maxLoops = (int)arg;
(1=0; i<maxLoops; i++)

int 1;
tnt maxLoops = (int)arg;
(1=0; t<maxLoops; 1++) {
1 pthread_mutex_lock(&mutex); //get the lock into CS
pthread_mutex_Llock(&mutex); //get the lock into CS (count==0) // check if there is nothing
(count==1) // check if something exist {
{ pthread_cond_wailt(&cond,&mutex);
pthread_cond_watt(&cond,&mutex); }
} int temp = get();
put (1); pthread_cond_signal(&cond);
pthread_cond_signal(&cond); pthread_mutex_unlock(&unlock);
pthread_mutex_unlock(&unlock); printf ("S%sd\n", temp);

What if there are multiple consumers?



SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

16


http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

