CS3.301 Operating Systems
and Networks

Concurrency - Semaphores and Classical Concurrency Problems

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

it ‘i 3 ."'
: ‘ ’ == INTERNATIONAL INSTITUTE OF
- - INFORMATION TECHNOLOGY

DDDDDDDDD



https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems 1n three easy pieces by Remzi et al.



Lets start simple

* Consider buffer can hold only one item, a single integer - How to solve?

® Producer-Consumer-GetAndPut ® Producer-Consumer

b (YA vold *producer (voild *arg)
{

int 1;
_ tnt maxLoops = (int) arg;
int get() (1=0; i<maxLoops; i++)
{ {
assert(count==1); put(i);
count = 0; }
buffer; ;

; int *consumer(voild *arg)

{
void put (int value) int value;

{ (1)
assert (count==0); {
buffer = value; value = get();
count = 1; printf("%sd\n", value);

}
; }

1int count




Surround with Locks and Condition Variables

Only one producer and one consumer

& Producer @ Consumer

cond_t cond;

cond t cond;
o i mutex_t mutex;

mutex_T mutex;

: : vold *consumer(voulid *ar
vold *producer(void *arg) ; ( 9)

{ int 1;
int maxLoops = (int)arg;
(1=0; i<maxLoops; i++)

int 1;
tnt maxLoops = (int)arg;
(1=0; t<maxLoops; 1++) {
1 pthread_mutex_lock(&mutex); //get the lock into CS
pthread_mutex_Llock(&mutex); //get the lock into CS (count==0) // check if there is nothing
(count==1) // check if something exist {
{ pthread_cond_wailt(&cond,&mutex);
pthread_cond_watt(&cond,&mutex); }
} int temp = get();
put (1); pthread_cond_signal(&cond);
pthread_cond_signal(&cond); pthread_mutex_unlock(&unlock);
pthread_mutex_unlock(&unlock); printf ("S%sd\n", temp);

What if there are multiple consumers?



What if there are more producers and consumers
Two Key Challenges

1. Gets the VoJue,

(D) % Sneaks n/

g. C1 tries to get from buffer
but ts e,mp'tl//”

If iInstead of while

(R

(RN
Cl |~ P1
GRS C1 starts rumning
3. Sleeps\ /f\
N 6. Slee_ps and moves
Slee.p?ng Queue. N c1 | P1 C1 To f‘e,oxdt/ queue
\

C1 moves to re,odt/ queue

Readt/ Queue [f; /
I




Everyone goes to sleep!

1. Check

10. Buffer is
empty goes back

to slee,p

/

g. Adds value 7. Checks

Buffer

1. Cheacks,

S le,ep?ng Queue

Ca
S S
. 6. Sle_e,ps awndl moVes
1 C1 to ready queue
Cl|(ca| Pt
1. Sleeps
— Whom To woke
7. Wokes Cf up? - CA?

; and moves to sle_e_P
Ready Queue Cl1|CA =

6



Use Two Condition Variables

cond_t fill;
cond_t empty;

* Producer waits on empty condition => waits for consumer to empty the buffer
» Signals on fill => signals consumer that buffer is filled!

 Consumer waits on fill condition = > waits for producer to fill buffer
» Signals on empty => signals producer that buffer is empty!

 Producer cannot awaken producer and consumer cannot awaken consumer

 What about more than one in the buffer? - Buffer can be an array of integers

14



Producer Consumer Problem Solution

o Get and Put for large sized buffer

int buffer[MAX]; Buffer now can hold an array of integers

int fill = 0;
int use = 0;
int count = 0;

* Fill and use are used to manage indexing

(one P (int value) e Producers can keep pushing data to the
buffer[fill] = value: buffer
fill = (fill + 1)%MAX;
count ++; :
}  Consumers can keep reading data from
| the buffer
int get()
{ .
int tmp = buffer[usel;  How to implement producer and
use = (use + 1)%MAX; COnsumer?

count --;
tmp;




Producer Consumer Problem Solution

® Producer with two condition variables ¢ Consumer with two condition variables

cond_t empty; //two condition variables cond_t empty; //two condition variables

cond_t fill; cond_t fill;
mutex t mUteX; mutex t mUteX;‘

. : ; * - - *
void *producer(void *arg) void *consumer(void *arg)

{ {
int 1;
tnt maxLoops = (int)arg;
(1=0; i1<maxLoops; 1++)
{ {
pthread_mutex_lock(&mutex); //get the lock into CS
(count==MAX) // check if its already full

int 1;
int maxLoops = (int)arg;
(1=0; i<maxLoops; i++)

pthread_mutex_lock(&mutex); //get the lock into CS
(count==0) // check if there is nothing

{
pthread_cond_watit(&empty,&mutex); }

{ pthread_cond_wait(&Fill,&mutex);
}

put (1);
pthread_cond_signal(&fill);
pthread_mutex_unlock(&unlock);

int temp = get();
pthread_cond_stignal(&empty);
pthread_mutex_unlock(&unlock);
printf ("%d\n", temp);




Is there a better way to do this?

e Locks: Provide atomic access to critical section

 Condition Variables: Allows signalling between threads or passing some
information on condition between threads

 What if both can be done using a single mechanism?

 Edsger W. Dijkstra did that through the concept of Semaphores

10



Simplicity is a great virtue but it requires hard work to achieve it and education to
appreciate it. And to make matters worse: complexity sells better

Semaphore: One structure which can act as both condition
Variable and lock |

W . LY, Lhety

Edsger W. Dijkstra

11



An Analogy

May be a waiter can help better?

\ /
-

chef prepares food Prepared items ‘g

orders form counter

Waiter



Semaphore

* An object with an integer value that we can manipulate with two routines: wait
and post. As per original naming:

* P(): proberen - Decrease the value, Check
* V(): Verhogen - Increase the value
e |In POSIX, there are two routines:
 sem_wait(): decrease the semaphore, if negative block

 sem_post(): increase the semaphore value

13



Semaphore

® Semaphore - Wait
N Semaphore

tnt sem wait(sem t *s)

{
// decrement s by 1

// wait 1f value of s 1s negative

#1nclude <semaphore.h>

sem_t s;

sem_init (&s, 0, 1); }

Tt l @ Semaphore - Post
N LI
SCMQPhOPC VO\IUC of SCW\O\P“\OP M int sem_post(sem_t *s)
{
shared between // increment value of s by 1
‘tkreads N Same. process // if there are threads waiting,

// wake one of them

}

14



Semaphore

 sem_wait():
* Either, it will either return right away after decrementing the value
* Or, it will cause the caller to suspend execution waiting for a subsequent post
 When there are multiple threads, they can call wait and get queued
e sem_post():
* Simply increments the value
* |f the thread is waiting, wakes one of them up

* Value of semaphore, when negative equals to number of waiting threads

15



Semaphores as Locks

Binary Semaphores - How to use Semaphores as locks?

* Always think about what should be the initial
value of semaphore, hereitis 1

e Assume there are two threads
® Semaphore - Locks

 Thread O calls sem_wait()
sem_tT sem_var;
e Decrements the value to O sem_init(&sem_var, 0, 1);

sem_walt (&sem_var);
e Thread 0 can enter CS

sem_post (&sem_var);

e At this time if Thread 1 wants to enter CS ->
calls sem_wait() -> -1, sleeps

 Once thread 0O is done, calls sem_post

* |Increments value by 1, wakes thread 1

16



Semaphores can also function as condition Variables

® Semaphore - Condition variables

sem_t sem_var;

void *child(voilid *arg)

{

}

printf("child\n");
sem_post(&sem_var);
NULL ;

int main (int argc, char *argv[])

{

sem_init(&s, 0, 1);
pthread_t c_thread;
pthread_create(c_thread, NULL, child, NULL);
sem_watlt(&sem_var);
printf("“parent\n");

There are two main possible execution

Parent runs, create the child and the
child has not run yet

Parent runs, creates the child and the
child immidiately runs

How does the semaphore help with
both the above condition?

« What should be value of sem var?

17



Semaphores as condition variables

G‘thre_o\d_creocte Ce_thread, NULL, child, ¥ ULLJ

~

pare_n‘t runs

Calls woait, Je,cr‘e,me_n‘ts

[ ,,
:

value to -1 and wo\"tsj

\

[ Child runs ]

V

Increments value to O
and waokes parent

N

554

N

Childl has not run

Ch\ld runs

N

[

Child runs Birst after
thread Qre,ad:ion

Calls post, mcre_men‘ts

Eo\lue, To 1, no one to wake

Parent runs ]

:
E

Calls woit, decrements
value to 0, Qomple‘tes




Producer Consumer Problem Usmg Semaphores

Producer-Consumer with buffer

* Let us start with 2 semaphores: empty
and wait, Buffer with MAX = 1 en t Ul

® Get and Put for large sized buffer ?{’OLd *producer(vold *arg)

int buffer[MAX];
int fill =
int use = 0;

int count 0;

vold put (int value)

{
buffer[fill] = value;

fill = (fill + 1)%MAX;
count ++;

}

int get()
{
int tmp = buffer[use];
use = (use + 1)%MAX;
count --;
tmp;

int 1;
tnt maxLoops = (int)arg;
(1=0; 1<maxLoops; 1++)

{
sem_walt(&empty);
put (1);
sem_post(&full);

}

5

vold *consumer(voild *arg)
{
int 1;
tnt maxLoops = (int)arg;
(1=0; 1<maxLoops; 1++)
{
sem_walt(&full);
int tmp = get();
sem_post(&empty);
printf("%d\n", tmp);




Is our solution fine?

* Consider two threads (producer and consumer) on single thread
 Assume consume runs first sem_wait(&full)
 Decrements full (0) to -1 and waits for the thread to call post
* Moves to a blocked state
* Producer runs, calls sem_wait (&empty)
« Empty (1) is decremented to 0 and proceeds to add value
* Once done, calls post and moves consumer to ready
* |f producer runs again, it will keep looping, consumer when runs, can get the lock

* This can work for multiple producers and consumers but what if MAX>1

20



SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

21


http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

