
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Concurrency - Semaphores and Classical Concurrency Problems

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in three easy pieces by Remzi et al.

2

Lets start simple
• Consider buffer can hold only one item, a single integer - How to solve?

3

Surround with Locks and Condition Variables
Only one producer and one consumer

4 What if there are multiple consumers?

What if there are more producers and consumers
Two Key Challenges

5

If instead of while

Everyone goes to sleep!

6

Use Two Condition Variables

• Producer waits on empty condition => waits for consumer to empty the buffer

• Signals on fill => signals consumer that buffer is filled!

• Consumer waits on fill condition = > waits for producer to fill buffer

• Signals on empty => signals producer that buffer is empty!

• Producer cannot awaken producer and consumer cannot awaken consumer

• What about more than one in the buffer? - Buffer can be an array of integers

7

Producer Consumer Problem Solution

• Buffer now can hold an array of integers

• Fill and use are used to manage indexing

• Producers can keep pushing data to the
buffer

• Consumers can keep reading data from
the buffer

• How to implement producer and
consumer?

8

Producer Consumer Problem Solution

9

Is there a better way to do this?

• Locks: Provide atomic access to critical section

• Condition Variables: Allows signalling between threads or passing some
information on condition between threads

• What if both can be done using a single mechanism?

• Edsger W. Dijkstra did that through the concept of Semaphores

10

Simplicity is a great virtue but it requires hard work to achieve it and education to
appreciate it. And to make matters worse: complexity sells better

Semaphore: One structure which can act as both condition
Variable and lock

11

Edsger W. Dijkstra

An Analogy
May be a waiter can help better?

12

Semaphore

• An object with an integer value that we can manipulate with two routines: wait
and post. As per original naming:

• P(): proberen - Decrease the value, Check

• V(): Verhogen - Increase the value

• In POSIX, there are two routines:

• sem_wait(): decrease the semaphore, if negative block

• sem_post(): increase the semaphore value

13

Semaphore

14

Semaphore
• sem_wait():

• Either, it will either return right away after decrementing the value

• Or, it will cause the caller to suspend execution waiting for a subsequent post

• When there are multiple threads, they can call wait and get queued

• sem_post():

• Simply increments the value

• If the thread is waiting, wakes one of them up

• Value of semaphore, when negative equals to number of waiting threads

15

Semaphores as Locks
Binary Semaphores - How to use Semaphores as locks?

• Always think about what should be the initial
value of semaphore, here it is 1

• Assume there are two threads

• Thread 0 calls sem_wait()

• Decrements the value to 0

• Thread 0 can enter CS

• At this time if Thread 1 wants to enter CS ->
calls sem_wait() -> -1, sleeps

• Once thread 0 is done, calls sem_post

• Increments value by 1, wakes thread 1
16

Semaphores can also function as condition Variables

• There are two main possible execution

• Parent runs, create the child and the
child has not run yet

• Parent runs, creates the child and the
child immidiately runs

• How does the semaphore help with
both the above condition?

• What should be value of sem_var?

17

Semaphores as condition variables

18

Producer Consumer Problem Using Semaphores
• Let us start with 2 semaphores: empty

and wait, Buffer with MAX = 1

19

Is our solution fine?

• Consider two threads (producer and consumer) on single thread

• Assume consume runs first sem_wait(&full)

• Decrements full (0) to -1 and waits for the thread to call post

• Moves to a blocked state

• Producer runs, calls sem_wait (&empty)

• Empty (1) is decremented to 0 and proceeds to add value

• Once done, calls post and moves consumer to ready

• If producer runs again, it will keep looping, consumer when runs, can get the lock

• This can work for multiple producers and consumers but what if MAX>1
20

21

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

