
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Classical Concurrency Problems and Concurrency Bugs

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in three easy pieces by Remzi et al.

2

Producer Consumer Problem Using Semaphores
• Let us start with 2 semaphores: empty

and wait, Buffer with MAX = 1

3

Is our solution fine?

• Consider two threads (producer and consumer) on single thread

• Assume consume runs first sem_wait(&full)

• Decrements full (0) to -1 and waits for the thread to call post

• Moves to a blocked state

• Producer runs, calls sem_wait (&empty)

• Empty (1) is decremented to 0 and proceeds to add value

• Once done, calls post and moves consumer to ready

• If producer runs again, it will keep looping, consumer when runs, can get the lock

• This can work for multiple producers and consumers but what if MAX>1
4

What about buffer with MAX>1
• Assume two producers, P1 and P2

• P1 runs first, fills the buffer entry, before updated, interrupt happens

• P2 starts to run and overwrites the value written by P1

• The reason:

• Two producers calling put() at the same time!!

• Race condition is triggered!

• Remember we have not locked get and put here. What can be done?

5

Add mutex to solve Producer-Consumer

• Is there any issue with above code?

6

• C1 runs first gets mutex but waits on empty, P1 runs but waits for mutex - Deadlock!!

Deadlocks?

7

Student has submitted a draft and

Waits for review

Professor is expecting student

To submit better version to start

Reviewing

Both wait - Deadlock

Producer Consumer Problem Using Semaphores
The Solution

• Add mutex lock around put and get

• Let producer and consumer get the signal and then lock when entering CS

8

An Analogy

9

Readers/Writers Problem

• Reader: Process or thread that reads from memory

• Writer: Process or thread that writes on the
memory

• Two readers can work on the same file at the same
time

• Multiple writers cannot work on the same file at the
same time

10

Readers/Writers Problem
Intuition

• Only one writer can write at any point of time!

• Reader thread can come in:

• More readers come in, they can be allowed access

• The moment writers come, it can be blocked

• Once readers are done with reading, writers can start writing

• Can you think about writing a solution to this?

• Do you foresee any challenges here?

11

Readers/Writers Problem

12

Readers/writers Problem Solution

13

Writers Starve!!!

Readers/Writers Problem Solution
Add a lock that can act as priority common to both

14

The Dinning Philosophers
An Analogy

15

• Five philosophers sit around a dinning
table

• They think for sometime and eat
spaghetti for sometime!

• There is one fork on the left and one on
the right of each

• If they get two forks, then they can start
eating, once done, they can keep it down

• How to solve it?

Image source: Wikipedia

Classic Problem: Dining Philosophers

• Each philosopher is a unique thread with an
id (p = 0 to 4);

• Get forks and put forks needs to be written
by ensuring there is no deadlock

• is there a possibility of deadlock? Why?

• Also no philosopher should starve!

• Can you think of implementing get_forks(p)
and put_forks(p)?

16

Possible Solution

17

Any issues here? Deadlock!!, How?

All semaphores initiated to 1

How deadlock happened?

• Each philosopher is one thread and they start running

• The first philosopher (0) has wait on 1, gets it (since
initial semaphore is 1)

• Immidiately second philosopher (1) runs, wait on 0,
but gets on right

• Third will run, waits on 2nd fork but gets the 4th one

• Fourth will run, waits on third but waits on 0

• All philosophers wait for their left fork and we have
a deadlock

18

Possible Solution

• Change the order in which they eat

• Philosopher 4 acquires the fork in a
different order

• There won’t be a situation in which one
philosopher grabs one and has to wait for
other

• The cycle of waiting is broken

• More solutions exist!

19

Concurrency Can be tricky!

There are some common Concurrency Bugs that can help identify some common bugs

20

Types of Bugs

• Bugs are very non-deterministic -
Occurrence order cannot be fixed

• Two types of bugs

• Non-deadlock bugs: Incorrect
results when threads execute

• Deadlock bugs: Threads keep
waiting for each other

21Source: https://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug
characteristics, ASPLOS, 2008

https://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Non-deadlock Bugs

Non-deadlock bugs make the majority of the bugs among concurrency bugs

• Two types of non-deadlock bugs

• Atomicity violation bugs

• Order violation bugs
22

Atomicity Bugs

• Atomicity assumptions made during development are violated during execution of threads

• Example: From MySQL where one thread reads and modifies a shared variable while other

tries to modify it

23

How to go about solving it?

Atomicity Bugs
Use locks when accessing shared data

24

Order Violation Bugs
• Desired/assumed order of execution of memory access is violated during

concurrent execution of threads

• Example: Assume thread 1 and thread 2. Thread 2 may assume that thread 1
has already run

25

How to go about solving it?

Order Violation Bugs
Use condition variables or semaphores

26

• Use condition variables

• Dependant thread can wait for dependency
operation to be completed

• Use combination of wait and signal

• Semaphores can also be used here!

• Remember: Locks are still needed to handle
the shared variable operation

Deadlock Bugs

• Its not always the case that deadlock occurs

• If executions overlap and context switches from thread after acquiring one lock

27

Deadlock: A Visual Representation
Cycle in a dependency graph

28

Conditions for deadlock
Four conditions should together hold for deadlock

• Mutual Exclusion: Thread claims exclusive control of a resource (eg: lock)

• Hold-and-wait: Thread holds a resource and is waiting for another

• No Preemption: Thread cannot be made to give up its resource (eg: cannot take
back a lock)

• Circular Wait: There exists a cycle in the resource dependency graph
29

Prevention of Circular Wait
• Acquire locks in a particular order

• Eg: Thread 1 and thread 2 acquires lock in the
same order

• Provide a total ordering for lock acquisition

• If there are only two locks, L1 and L2 => always
acquire L1 before L2

• In more complex systems, more than two locks
exist => partial ordering

• Some locks can be given higher ordering than
other locks

• Lock ordering can also by done using the address
of the lock

30

Preventing Hold-and-Wait

• Hold all the locks at once, atomically by acquiring a master lock first

• This may have an impact on concurrent execution and performance gains

31

“Trying” to get some Preemption Done

• Thread can try for a lock before getting it - pthread_mutex_trylock

• Function returns 0 on successfully acquiring the lock

• If other thread also does in same order => possibility of livelock

• Periodic delay can be added to avoid live locking
32

What about avoiding need for mutual exclusion?

• Not using any locks like pthread_locks or condition variables

• Using powerful hardware instructions

• No need to do explicit locking

• Hardware primitives like Compare-and-swap can be used

• For instance, atomic incremental of shared value can be done using 1 line
of compare and swap

• No lock, no deadlock but livelock is still a possibility

33

Deadlock Avoidance
• In some scenarios avoidance is preferable instead of prevention

• Deadlock avoidance via Scheduling

• If OS knows which threads requires locks at which point of times, it can
schedule them accordingly

34

T1 T2 T3 T4

L1 yes yes no no

L2 yes yes yes no

• T1 and T2 are not run at the same time

• T1 and T3 do not share a lock

• Methods like Bankers algorithm by Dijkstra have been suggested but practically not
applicable

Deadlock Avoidance
Detect and Recover

• Allow deadlocks to occur occasionally and take some action

• If OS freezes, reboot the system

• Some systems like databases employ deadlock detection and recovery
technique

• Deadlock detector runs periodically

• Resource graph is created to detect cycles

• In the event of cycles, restart the system

35

36

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

