CS3.301 Operating Systems
and Networks

Classical Concurrency Problems and Concurrency Bugs

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

it ‘i 3 ."'
: ‘ ’ == INTERNATIONAL INSTITUTE OF
- - INFORMATION TECHNOLOGY

DDDDDDDDD

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems 1n three easy pieces by Remzi et al.

Producer Consumer Problem Usmg Semaphores

Producer-Consumer with buffer

* Let us start with 2 semaphores: empty
and wait, Buffer with MAX = 1 en t Ul

® Get and Put for large sized buffer ?{’OLd *producer(vold *arg)

int buffer[MAX];
int fill =
int use = 0;

int count 0;

vold put (int value)

{
buffer[fill] = value;

fill = (fill + 1)%MAX;
count ++;

}

int get()
{
int tmp = buffer[use];
use = (use + 1)%MAX;
count --;
tmp;

int 1;
tnt maxLoops = (int)arg;
(1=0; 1<maxLoops; 1++)

{
sem_walt(&empty);
put (1);
sem_post(&full);

}

5

vold *consumer(voild *arg)
{
int 1;
tnt maxLoops = (int)arg;
(1=0; 1<maxLoops; 1++)
{
sem_walt(&full);
int tmp = get();
sem_post(&empty);
printf("%d\n", tmp);

Is our solution fine?

* Consider two threads (producer and consumer) on single thread
 Assume consume runs first sem_wait(&full)
 Decrements full (0) to -1 and waits for the thread to call post
* Moves to a blocked state
* Producer runs, calls sem_wait (&empty)
« Empty (1) is decremented to 0 and proceeds to add value
* Once done, calls post and moves consumer to ready
* |f producer runs again, it will keep looping, consumer when runs, can get the lock

* This can work for multiple producers and consumers but what if MAX>1

What about buffer with MAX>1

 Assume two producers, P1 and P2
 P1 runs first, fills the buffer entry, before updated, interrupt happens
o P2 starts to run and overwrites the value written by P1
* The reason:
* Two producers calling put() at the same time!!
* Race condition is triggered!

« Remember we have not locked get and put here. What can be done?

Add mutex to solve Producer-Consumer

Producer Consumer
- N
sem_wout Lmut e,x); sem_wait L mut ex);
sem_wait (Lempty); sem_wait (Lfull);
Pu‘t(I); 38’50;
Sem___.pos‘t (&pu“), SCW_—POSt E&emf’t‘f))i
WA O mu : Sewm ost &Mu‘t I
\se__pst(& ‘te,x),J \e_.p exj

* |s there any issue with above code?

* C1 runs first gets mutex but waits on empty, P1 runs but waits for mutex - Deadlock!!

Student has submitted a draft and
Waits for review

Deadlocks?

Professor is expecting student
To submit better version to start
Reviewing

Let me Both wait - Deadlock

wait for feedback!

| will wait for
student to submit the
nhext version to review

Professor

Student

Producer Consumer Problem Using Semaphores

The Solution
Producer Consumenr

4 ™ - ™
sem_wait .(&emp‘tt/) ; sem_woit (Lpul l) !
sem__wail (&. mul ex); Sem__.wo\?‘t (&. mul ex);
eut(); qetQ;
Sem__pOS‘t (L mutex); sew__.post LU mutex);
sem_post (&full); sem_post (Lempty);

_ J _ _J

 Add mutex lock around put and get

* Let producer and consumer get the signal and then lock when entering CS

8

An Analogy

One Person writing

(‘j’lﬁ
;q e

14

Many people reading at the same time

Online word processors Databases

Readers/Writers Problem

 Reader: Process or thread that reads from memory

e Writer: Process or thread that writes on the o w
memory R
. Gi gy Gy
e Two readers can work on the same file at the same
time ~ @ ¢ A
~
* Multiple writers cannot work on the same file at the Fle

same time &

10

Readers/Writers Problem

Intuition

 Only one writer can write at any point of time!
 Reader thread can come In:

 More readers come In, they can be allowed access

e The moment writers come, It can be blocked

* Once readers are done with reading, writers can start writing
e Can you think about writing a solution to this?

Do you foresee any challenges here?

11

Readers/Writers Problem

Readers/Writers Problem Solution

rwlock t

int readers;
sem_t lock;

sem_t writelock;
Frwlock_t;

vold rwlock init(rwlock t *rw)

{

rw -> readers = 0;
sem_init(&rw->lock,0,1);
sem_init(&rw->writelock,0,1);

}

12

Readers/writers Problem Solution

o Readers/Writers Problem Solution

vold acquire_readlock(rwlock_t *rw)
{
sem_walt(&rw->1lock);
rw->readers++;
(rw->readers == 1)
//disable writers to enter
sem_walt(&rw->writelock);
sem_post(&rw->1lock);

}

vold release readlock(rwlock t *rw)

{
sem_wait(&rw->lock); Writers Starve!!!

rw->readers --;
(rw->readers == 0)
//free the write lock
sem_post(&rw->writelock);

sem_post(&rw->1lock);

}

volid acquire_writelock(rwlock_t *rw)

{

sem walt(&rw->writelock)

}

vold release writelock(rwlock t *rw)

{

sem_post(&rw->writelock)

}

Readers/Writers Problem Solution

Add a lock that can act as priority common to both

® Readers Writers - Better solution ® Readers Writers - Better solution

sem_t serviceQueue; sem_t serviceQueue;

sem_walt(&serviceQueue); sem_walt(&serviceQueue);
sem walt(&rw->writelock) sem walt(&rw->lock)

sem_post(&rw-> writelock) sem_post(&rw-> ?OCK)
sem_post (&serviceQueue); sem_post (&serviceQueue);

An Analogy

Image source: Wikipedia

The Dinning Philosophers

15

Five philosophers sit around a dinning
table

They think for sometime and eat
spaghetti for sometime!

There I1s one fork on the left and one on
the right of each

If they get two forks, then they can start
eating, once done, they can keep it down

How to solve it?

Classic Problem: Dining Philosophers

while (1)
¢
thinkQ);
3e‘t__.\°or*k$(p) ;
eat);
Pu‘t__.Por‘k S(p) !
2

J

Each philosopher is a unigue thread with an
id (p = 0to 4);

Get forks and put forks needs to be written
by ensuring there is no deadlock

* |s there a possibility of deadlock? \Why?
* Also no philosopher should starve!

Can you think of implementing get_forks(p)
and put_forks(p)?

16

Possible Solution

All semaphores initiated to 1

® Dinning Philosophers Problem

® Dinning Philosophers Problem
sem_t forks[5]; //array of

semaphores, one for each fork
int left(int p)
{ void get forks(int p)
P; {
} sem_wailt(&forks[left(p)])
sem_wailt(&forks[right(p)])

)
p

int right (int p) }
1
(p+1)%5; void put_forks(int p)
1
)

sem_post(&forks|[left(p
(pl)

) |
sem_post(&forks[right(p]
Any issues here? Deadlock!!, How? s

17

How deadlock happened?

P1 » Each philosopher is one thread and they start running

P:l

» The first philosopher (0) has wait on 1, gets it (since

initial semaphore is 1)
» |mmidiately second philosopher (1) runs, wait on O,
but gets on right
. . Third will run, waits on 2nd fork but gets the 4th one
. . » Fourth will run, waits on third but waits on O
» All philosophers wait for their left fork and we have
a deadlock

18

Possible Solution

o Dinning Philosophers Problem

sem_t forksl>l; //array of e Change the order in which they eat
semaphores, one for each fork

void get_forks(int p) * Philosopher 4 acquires the fork in a

{ different order
(p==4)

1 e There won’t be a situation in which one

sem_walt(&forks[right(p)]) _ _
sem wait(&forks[left(p)]) philosopher grabs one and has to wait for

+ other
sem_wailt(&forks[left(p)]
sem_wait(&forks[right(p)

)
])

)
p

! The cycle of waiting is broken

More solutions exist!

vold put_forks(int p)

{
sem_post(&forks[left(p
(

sem_post(&forks[right

)

)]
pl)
}

19

Concurrency Can be tricky!

@ = o m™e - L ad W
7"’. AA—,- e, -~ — = g - . ~ - A - Fa W o W s
- ; -

. - - IR - N - . - - - - e
Pl i lle i iliey fen 2L el Uo D S ilee g0,
-

I've only been writissqftware for 15 years

|

8

b4

o
F 9
. \ /
N
\ %
Can someone explain how concurrency
and multithreading is done?

A\)

There are some common Concurrency Bugs that can help identify some common bugs

20

Types of Bugs

 Bugs are very non-deterministic -
Occurrence order cannot be fixed

* Two types of bugs Application Description oD ok
MySQL Database Server 14 9
* Non-deadlock bugs: Incorrect Apiche Web Server 13 4
results when threads execute On0ice S S = =
Total 74 31

 Deadlock bugs: Threads keep
Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from

Wa|t| ng fOr eaCh Other mistakes: a comprehensive study on real world concurrency bug
characteristics, ASPLOS, 2008

Source: https://pages.cs.wisc.edu/~shanlu/paper/asplosi22-lu.pdf 21

https://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Non-deadlock Bugs

Findings on Bug Patterns (Section 3)

Implications

(1) Almost all (97%) of the examined non-deadlock bugs

belong to one of the two simple bug patterns:
atomicity-violation or order-violation™.

Concurrency bug detection can focus on these two bug
patterns to detect most concurrency bugs.

(2) About one third (32%) of the examined non-deadlock
bugs are order-violation bugs, which are not well addressed
in previous work.

New concurrency bug detection tools are needed to
detect order-violation bugs, which are not addressed
by existing atomicity violation or race detectors.

Non-deadlock bugs make the majority of the bugs among concurrency bugs

* [wo types of non-deadlock bugs
* Atomicity violation bugs

* Order violation bugs

22

Atomicity Bugs

* Atomicity assumptions made during development are violated during execution of threads

 Example: From MySQL where one thread reads and modifies a shared variable while other
tries to modify it

o Atomicity Bug
Thread 1 Thread 2
Thread 1:: S1: if (thd=> proc_info)— — —_
{ ___ _253:thd> proc_info=NULL:
(thd->proc_info) S2: fputs(thd~> proc_info, ---):
fputs(thd->proc_info,..); }

MySQL ha_innodb.cc ——_ % Buggy Interleaving

Thread 2::
thd->proc_info = NULL; How to go about solving it?

23

Atomicity Bugs
Use locks when accessing shared data

® Atomicity Bug

pthread_mutex_lock_t thd_proc_info = PTHREAD_MUTEX_INITIALIZER;
Thread 1::

pthread_mutex_Llock(&thd_proc_info);
(thd->proc_1info)
{

fputs(thd->proc_info,..);

}
pthread_mutex_unlock(&thd_proc_info);

Thread 2::
pthread_mutex_lock(&thd_proc_info);
thd->proc_info = NULL;
pthread_mutex_unlock(&thd_proc_info);

24

Order Violation Bugs

* Desired/assumed order of execution of memory access is violated during
concurrent execution of threads

« Example: Assume thread 1 and thread 2. Thread 2 may assume that thread
has already run

® Order Violation Bug

Thread 1::

void intt(..) Thread 1 Thread 2 ——

{ Cg[rect Order
. . void init (--+) _ , Bu Order
mThread = PR_CreateThread(mMain,...); { id mMain (---) o9

/ T\ Thread 2
should not
mThread=PR CreateThread (mMain, ---); MState=
- () mThread- State; | déreference
—~ —_—— — — mThread
before Thread

Thread 2:: | } 1 initializes it.
| _ Mozilla nsthread.cpp

void mMain(..)

{] PN
nState = mTrhead->state: How to go about solving it®

}

25

Order Violation Bugs

Use condition variables or semaphores

® Order Violation Bug - Solution

pthread_mutex_t mLock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t mCond = PTHREAD_COND_INITIALIZER;
int mInit = 0;

Thread 1:: e Use condition variables

void init(..)

{ :
 Dependant thread can wait for dependency
mThread = PR_CreateThread(mMain,...);

pthread_mutex_lock(&mLock); C)F)Ear21ti()r] t() t)€3 (:()rT1F)IEEt€3(j

mInit = 1
pthread_cond_signal(&mCond);

pthread_mutex_unlock(&mLock) ; * Use combination of wait and signal

 Semaphores can also be used here!

Thread 2::

void mMain(..) e Remember: Locks are still needed to handle
© thread mutex_lock(EmLock): the shared variable operation

(mInit == 0)
pthread_cond_watit(&mCond,&mLock);
pthread_mutex_unlock(&mLock);
mState = mTrhead->state;

26

Deadlock Bugs

(7) Almost all (97%) of the examined deadlock bugs involve Pairwise testing on the acquisition/release sequences to
two threads circularly waiting for at most two resources. two resources can expose most deadlock concurrency bugs,
and reduce testing complexity.

Thread 1 Thread 2

" othread_mutex_lock(LD); | [pthread _mutex_lock(La);’

. ethread _mutex_lock(L);) kP“S|f\f‘e<7~ri._..mu"(3ti’)(._-.l<>C’< (L) y

* |ts not always the case that deadlock occurs

 |f executions overlap and context switches from thread after acquiring one lock

27

Deadlock: A Visual Representation
Cycle in a dependency graph

M
| A
." T “
| \
r" “
/ \
J

|
i Wanted b
Wanted ,ot/ h \e 7

Thread
Lock L2 |— holds 2

Conditions for deadlock

Four conditions should together hold for deadlock

 Mutual Exclusion: Thread claims exclusive control of a resource (eg: lock)
 Hold-and-wait: Thread holds a resource and is waiting for another

 No Preemption: Thread cannot be made to give up its resource (eg: cannot take
back a lock)

* Circular Wait: There exists a cycle in the resource dependency graph

29

Prevention of Circular Wait

* Acquire locks in a particular order

 Eg: Thread 1 and thread 2 acquires lock In the
same order

* Provide a total ordering for lock acquisition

* |f there are only two locks, L1 and L2 => always
acquire L1 before L2

* |n more complex systems, more than two locks
exist => partial ordering

 Some locks can be given higher ordering than
other locks

* Lock ordering can also by done using the address
of the lock

30

~
if (m1 > m2)

} else {

pthread_mutex_lock(ml);
pthread_mutex_lock(m2);

pthread_mutex_lock(m2);
pthread_mutex_lock(ml);

}
,/

Preventing Hold-and-Wait

 Hold all the locks at once, atomically by acquiring a master lock first

//fpthread_mutex_lock(master); A
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);

.éhread_mutex_unlock(master);
P),

* This may have an impact on concurrent execution and performance gains

31

“Trying” to get some Preemption Done

/;op: B
pthread_mutex_lock(L1);
if (pthread_mutex_trylock(L2)# 0) {
pthread_mutex_unlock(L1l);
goto top,;
N Y

* Thread can try for a lock before getting it - pthread_mutex_trylock
* Function returns 0 on successfully acquiring the lock
e |f other thread also does in same order => possibility of livelock

* Periodic delay can be added to avoid live locking

32

What about avoiding need for mutual exclusion?

* Not using any locks like pthread_locks or condition variables
* Using powerful hardware instructions

 No need to do explicit locking

 Hardware primitives like Compare-and-swap can be used

* For instance, atomic incremental of shared value can be done using 1 line
of compare and swap

* No lock, no deadlock but livelock is still a possibility

33

Deadlock Avoidance

* |n some scenarios avoidance Is preferable instead of prevention

* Deadlock avoidance via Scheduling

* |[f OS knows which threads requires locks at which point of times, it can
schedule them accordingly

T4 T2 T3 = opy | G o
L2 yes yes yes 0 S LR

e T1and T2 are not run at the same time

e 1 and T3 do not share a lock

* Methods like Bankers algorithm by Dijkstra have been suggested but practically not
applicable

34

Deadlock Avoidance

Detect and Recover

* Allow deadlocks to occur occasionally and take some action

e |f OS freezes, reboot the system

« Some systems like databases employ deadlock detection and recovery
technique

 Deadlock detector runs periodically
 Resource graph is created to detect cycles

* |n the event of cycles, restart the system

35

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

36

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

