
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Persistence: RAIDs

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in Three Easy Pieces by Remzi et al.

2

The flow of access

3

• Application performs read or write to a file

• CPU communicates to OS which invokes the
File System (FS)

• The OS may check in its cache if its already
there

• FS prepares block level information to disk
controller

• A Direct Memory Access (DMA) is set up

• Disk controller performs the physical read or
write based on commands from DMA and file
system

• If its read, Disk -> DMA, for writes, DMA ->
Disk

Modern Hard Disks

4Source: Times of India

Quick Overview

• Disk rotates on a spindle

• The arm can move across (seek) or stay
as the disk rotates

• The head is used to read/write

• Data is arranged in tracks as blocks/
sectors

• There are 100s of tracks on a single disk

• Seek, rotate and transfer - three key
phases

5

I/O Time of Disks

• Random Workload

• Issues small (4 KB) reads to random locations on the disk

• Very common in applications like Database management systems

• Sequential Workload

• Reads large number of sectors consecutively from disk

• These are also quite common!

• Given workload, we can perform some comparison on the disk performance

• We would also need some disk characteristics
6

So far its about one disk!

7

Will the idea of one disk be enough?

We may need more!
• Disks are slower!

• I/O is slower - Bottleneck!

• Disks may get fuller

• Disk can also fail

• Multiple facets needs to be
considered

• What can be a better
mechanism?

8

Redundant Array of Inexpensive Disks (RAID)

• Techniques to use multiple disks in concert to build faster, bigger and more
reliable disk system

• Term introduced in late 90’s by a group of researchers in UC Berkley

• Externally RAIDs look just like group of blocks one can read or write

• Internally RAID is very complex

• Consisting of multiple disks

• Its own memory - DRAM

• One or more processor to manage the system
9

RAIDs vs Traditional Disks
• One advantage is performance

• Multiple disks in parallel can greatly enhance speed

• More disks => More capacity as well

• RAIDS can also enhance reliability

• Without RAID techniques, the disk is vulnerable to loose data

• RAIDs can tolerate loss of data and keep operating as if nothing went wrong
- Redundant disks

• RAID provides advantages transparently to the system

• OS feels that its just interacting with a single disk
10

RAIDs: Simple Illustration

• As far as File System (the subcomponent inside OS) is concerned

• RAID is just like a disk

• Linear array of blocks each of which can be read or written
11

RAID in Action

12https://www.lenovo.com/in/en/data-center/servers/towers/

RAIDs
• At a high level, RAIDs are like a computer system

• RAID is like a box with standard (SCSI or SATA) to a host

• Provides a consistent interface to the OS

• Internally RAIDs are very complex

• Consists of a microcontroller that runs a firmware

• Volatile memory such as DRAM to buffer data blocks as they are read and written

• Non-volatile memory to buffer writes safely and for parity calculation as well

• Instead of running application RAID, runs specialised software designed to operate
RAID

13

Evaluating RAIDs

• Many approaches are there to build a RAID system

• Each has different characteristics

• Three axes can be used for evaluation

• Capacity

• Reliability

• Performance

14

Evaluating RAIDs
• Capacity

• Given a set of N disks each of size B blocks. How much capacity is available for
usage?

• Some redundancy may be required => N/2 when each is replicated

• Performance

• What’s the impact of different workload on the latency of I/O?

• What’s the throughput? Rate of transfer -Transfers/second!

• Reliability

• How many failures/faults can the RAID system tolerate?

• The fault model considered: A fault => total disk has failed!
15

RAID level 0: Striping

• Simple form: Spread the blocks across the disks in a round robin fashion

• Blocks in the same row - Stripe

• No redundancy 16

RAID level 0: Striping

• Two 4 KB blocks are placed in one disk before moving to another

• Chunk size is 8 KB and a stripe consists of 4 chunks -> 32 KB of data

• Chunk size do have an impact on the performance! - How?17

RAID Level 0: Impact of Chunk Size
• Small chunk size

• Many files will get stripped across disks

• Increases parallelisms of reads and writes

• Positioning time to access blocks across disks increases

• Big chunk size

• Reduces intra-file parallelism, relies on multiple concurrent request to achieve high
throughput

• Large chunk size reduces positioning time (One file in one disk) same as using one
disk

• Best chunk size is hard to get - Depends on the workload!
18

RAID Level 0: Performance Analysis

• Two main things to evaluate:

• Single-request latency: latency of single I/O request to RAID

• Steady-state throughput: Total bandwidth of concurrent requests

• Two main workloads:

• Sequential: Request to disk arrive in large contiguous chunks

• Random: Each request is small to a random location on disk

• Assume disk transfers at S MB/s under sequential and R MB/s under random
19

RAID Level 0: Performance Analysis

• Consider the following disk characteristics

• Sequential transfer of size 10 MB on average

• Random transfer of size 10 KB on average

• Average seek time 7 ms

• Average rotational delay 3 ms

• Transfer rate of disk 50 MB/s

• How to calculate S and R?

20

RAID Level 0: Analysis

• 7 ms spend seeking and 3 ms spend in rotation => total: 10 ms

• 10 MB @ 50MB/s => 200 ms for transfer => total: 200 + 10 = 210 ms

• S = 10 MB / 210ms = 47.62 MB/s

• For R, 10 KB @ 50 MB/s => 0.195 ms => total: 10 +. 0.195 = 10.195 ms

• R = 10 KB / 10.195 ms = 0.981 MB/s

• Steady-state throughput equals N*S MB/s or N*R MB/s depending on workload

• RAID 0 is more like an upper bound

21

RAID level 1: Mirroring

• Copies are made, each copy is placed in a different disk - Handle failures!

• Data is stripped across mirrored pairs

22

RAID Level 1: Mirroring

• Read

• When reading from a block, RAID has a choice!

• Assume a read comes to 0, the system can either use Disk 0 or 1

• Write

• No choice exists, the write needs to happen in both copies of data

• This promotes reliability, writes can happen in parallel

23

RAID 1: Analysis

• Capacity, with all replicated, achieved capacity: N/2

• Reliability, RAID 1 can tolerate failure of 1 disk

• Performance

• For single read request, RAID-1 just needs to redirect to one of the copies

• Write is little different: Two writes needs to happen and it will happen in
parallel => time will be almost equal to single write

• But, due to worst case rotational of two requests, it will be higher than write
to a single disk

24

RAID 1: Analysis

• Steady state throughput

• Bandwidth during sequential write is (N/2) * S MB/s or half the peak

• Each write involves writing in two different locations

• Sequential reads also has a similar bandwidth:

• Consider reads that needs to be done on blocks: 0,1, 2, 3, 4, 5, 6, 7

• What will be the bandwidth or steady state throughput in this case?

25

RAID 1: Analysis
• 0 is send to D0, 1 to D2, 2 to D1, 3 to

D3….

• 0 comes to D0 then next one is 4, 2 is
skipped (since it goes to D1)

• Simply keeps rotating without doing
useful transfer (as D1 is taken care)

• Each disk will only deliver half the peak
bandwidth, (N/2) * S MB/s for Sequential
reads

• Random reads N*R and write (N/2) * R
MB/s

26

Redundancy is good but can we do better?

RAID Level 4: Introducing Parity

• Another method for better managing redundancy: Parity

• They aim to use less capacity and overcome space issues at cost of performance

• For each stripe of data above, a parity block is added that stores the redundant
information for that block

27

RAID Level 4

• P1 has redundant information that it is
calculated from blocks 4, 5, 6 and 7

• To compute parity XOR function is used

• XOR returns 1 if there are odd no of 1’s

• XOR returns 0 if there are even no of
1’s

• This allows to identify if there were some
changes in any of the blocks - how?

28

RAID Level 4

• The parity information can be used to recover from failure

• Assume data in first row of C2 is lost (it is 1) and it is 0

• Read all the other values in the row and reconstruct the answer

• Without value of C2 (1), XOR (0,0,0,1) = 0; Hence we can find that C2 needs to be 1
29

C0 C1 C2 C3 P

0 0 1 1 XOR (0,0,1,1) = 0

0 1 0 0 XOR (0,1,0,0) = 1

RAID Level 4

• In the larger context perform bitwise XOR of all the bits

• Perform Bitwise XOR across each bit of data blocks

• Put the result of each bit in the corresponding bit slot in parity block

30

Block 0 Block 1 Block 2 Block 3 Parity

0 10 11 10 11

10 01 00 1 10

RAID Level 4: Analysis

• Capacity: 1 disk is for parity hence (N-1)*B

• Reliability: Tolerates 1 disk failure, if more than 1 is lost, no way to recover

• Performance, Steady-state-throughput:

• Sequential reads: (N-1)*S MB/s

• Sequential writes: (N-1)*S MB/s (write also parity in parallel, full-stripe write)

• Note: writing to parity at same time is not performance gain for client! Hence N-1

• Random read: (N-1)*R MB/s

• Random writes?

31

RAID Level 4: Analysis

• Main operations involved in write, especially random write:

• Update a block + update of parity

• Method 1: Additive Parity

• Read in all of the other blocks in that stripe

• XOR those blocks with the new block

• Problem: As number of blocks increase, this can be challenging, reading of
all blocks to perform XOR

32

RAID Level 4: Analysis

• Method 2: Subtractive Parity

• Update C2(old) -> C2 (new)

• Read old data in C2 (C2(old)=1) and old data in parity (P(old) = 0)

• Calculate P(new) = (C2(old) XOR C2(new)) XOR P(old)

• If C2(new) == C2 (old) -> P(new) = P(old)

• If C2(new)!=C2 (old) -> Flip the old parity bit
33

C0 C1 C2 C3 P

0 0 1 1 XOR (0,0,1,1) = 0

Small-write Problem
• The parity disk can be a bottleneck

• Example: Writes to 0 and 9

34

• Disk 0 and Disk 1 can
be accessed in parallel

• Disk 4 prevents any
parallelism

• RAID-4 under random workload, small writes is (R/2) MB/s - terrible!

• How to improve further?

I/O Latency in RAID-4

• A single read

• Equivalent to latency of single disk request

• A single write

• Two reads + Two writes

• Data block + parity block

• The reads and writes can happen in parallel

• Total latency is twice that of single disk

35

RAID Level 5: Rotating Parity

• Addresses the small-write problem

• Similar to RAID-4 except that keeps rotating the parity block

• Removes the parity-disk bottleneck for RAID-4
36

RAID-5 Analysis

• Capacity and reliability identical to RAID-4

• Sequential read and write performance similar to RAID-4

• Random read performance is little better (utilize all disks)

• Random write performance

• Here the write requests can be parallelized as parity is not bottleneck

• Given large number of random write requests, all disks can be evenly kept
busy, total bandwidth = (N/4)*R MB/s. Still 4 I/O operations (as parity is there)

37

Summarizing RAIDS

• Performance and do not care about reliability -> RAID-0 (Striping)

• Random I/O performance and reliability -> RAID-1 (Mirroring)

• Capacity and Reliability -> RAID-5

• Sequential I/O and Maximise Capacity -> RAID-5

38

39

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

