
Karthik Vaidhyanathan 

CS3.301 Operating Systems 
and Networks
Persistence: Files and Directories

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com


Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various 
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in Three Easy Pieces by Remzi et al.

2



The flow of access

3

• Application performs read or write to a file


• CPU communicates to OS which invokes the 
File System (FS)


• The OS may check in its cache if its already 
there


• FS prepares block level information to disk 
controller


• A Direct Memory Access (DMA) is set up


• Disk controller performs the physical read or 
write based on commands from DMA and file 
system


• If its read, Disk -> DMA, for writes, DMA -> 
Disk



So far!

• Devices for Persistence 

• Hard disk - Simple interface, store data in magnetic disks


• RAIDs provide support for improved capacity, performance and reliability


• What we still need! 

• How to manage a persistence device?


• What about the APIs?


• What are some key implementation aspects!

4



Virtualization of Storage

• Just like memory, storage is virtualised


• Supported by file system


• User does not see disk but everything is 
through two major abstractions


• Two Key abstractions 

• Files


• Directories

5
Image source: Dalle-3



Files

6

• Linear array of bytes each of which can be read or written


• Each file has a human-readable name - “sample.pdf”


• Each file has a unique low-level name (not user given, OS given) - inode number 
(i-number)


• Type of the file is not the concern of the OS (image, code, etc)


• File system should ensure that data is stored persistently


• Also ensures that data is retrieved when requested


• Applications can worry about extensions and reading file in the way needed



Directories

• A directory is just like a file 


• It also has a low-level name: inode number


• Contains a list of pairs (user readable file name, i-node number)


• Eg: consider a directory name OSN 

• (Lectures, 123) -> Directory


• (OSN_L23.pdf, 326) -> File


• Basically directory is a special type of files with contents: files, directories and 
corresponding i-node numbers

7



Inode Number - Truth!

“In truth, I don't know either. It was just a term that we started to use. ‘Index’ 
is my best guess, because of the slightly unusual file system structure that 
stored the access information of files as a flat array on the disk…  

8

Dennis Ritchie 



The Unix Directory Tree

9

• Files and directories arranged in a tree 


• Directory hierarchy starts at root directory - 
referred to as /


• Uses a separator to name subsequent 
directories 


• Absolute pathname can be used:


• /home/Documents/img.jpg


• File has two parts:


• Arbitrary name - “img”


• Type - “.jpg”


• Everything is an abstraction by OS



File System Interface

• Everything in Unix is virtually a file


• Mainly the file system has to provide three interfaces


• Creation of files - Support creating files, allocate space


• Accessing files - Reading and writing files 


• Deletion of files - Delete files and clear space


• Internally everything is 1s and 0s in the disk so File system has a big responsibility!

10



Creation Interface
• open() system call with flag to create file


int fd = open(“sample”, O_CREAT | O_WRONLY, O_TRUNC, S_IRUSR | S_IWUSR); 

• O_CREAT: creates a file if it does not exist


• O_WRONLY: file is write only


• O_TRUNC: truncates file to zero bytes if it already exists


• S_IRUSR or S_IWUSR: permissions - make file readable or writeable 


• The call returns a number, file descriptor: operations on file uses the file descriptor


• Existing files must be opened before they can be read or written


• close(): closes the file 
11



Access Interface

• read () / write () system calls: Reading/writing files


• Three arguments: file descriptor, buffer with data, 
size


• Buffer - where data will be placed and size - size of 
buffer


• Reading and writing happens sequentially by default


• Successive read/write calls fetches from the offset 
that is being used


• Every process has three files opened - stdin, stdout, 
stderr with fd 0, 1 and 2

12



Random Reading and Writing
• In general file is accessed sequentially


• Read/write from beginning to end


• What if it needs to be randomly accessed for read/write?


• lseek() system call - seek to random offset


• Start reading and writing from random offset


• off_t lseek(int flides, off_t offset, int whence); 

• flides  - file descriptor


• off_t - moves pointer to a given offset,


• Whence - determines how seek is performed (from an offset, from given + some 
offset or size of file + offset 13

lseek has nothing to do with disk 
seek!



A Simple Example - Normal Read

• Offset is initialised to 0 when opened


• For each read call, the offset is incremented fixed value - sequentially


• At the end, 0 denotes the read has been completed14

System calls Return  
Code

Current  
Offset

fd = open(“file.txt”, O_RDONLY); 3 0

read (fd, buffer, 100); 100 100

read (fd, buffer, 100); 100 200

read (fd, buffer, 100); 100 300

read (fd, buffer, 100); 0 300

close(fd); 0 -



A Simple Example -  Seeking

• Offset is initialised to 0 when opened


• lseek sets the offset to 200


• Read call, reads the next 50 bytes and updates offset15

System calls Return  
Code

Current  
Offset

fd = open(“file.txt”, O_RDONLY); 3 0

lseek( fd, 200, SEEK_SET); 200 200

read (fd, buffer, 50); 50 250

close(fd); 0 -



There is a buffer - How to write immidiately?
• Regular writes, write() puts the data to buffer => 

some point it will be written to persistent storage


• This is done for performance enhancement 
(keep in buffer for 5 to 30 seconds)


• Some applications require more real-time 
guarantees 


• System call: fsync( int fd): returns 0, once write is 
complete 

• Sometimes fsync has to be called on directory 
itself that contains the file


• This ensures that file is on disk

16



Metadata of files

• File system stores fair amount of data about files


• Information include: file size, last access, last modified, user id of the owner, 
links count, pointers to data blocks, etc.


• This metadata is stored by file systems in a structure called inode 

• Inode - persistent data structure used by the file system 

• They store all the metadata information for a file


• They are stored in the disks but copies are cached to main memory when 
needed!

17



Interface for Directories
• Directories can also be accessed like files


• Operations like create, open, read, close


• Create directory - mkdir() system call, when created its empty. It has two entries


• “.” And “..” Itself and the parent directory respectively


• Listing all the directories - ls command (internally - opendir(), readdir() and 
closedir())


• What about rm  * and rm -rf  * ?  - Powerful double-edged sword!


• Directory entry contains information such as name, I-node number, 


• Deleting directory - rmdir ()  - System call and command have same name
18



Hard Links
• Hard linking creates another file that points to the 

same i-node number (hence same underlying 
data)


• Assume a file, “file1” which just contains a string 
“test” - What if we need file2 linked to this?


• Another file that links to this can be created using 
link() call - ln command


• Essentially both files have same underlying data - 
just two different user-given names 


• I-node maintains a link count, file deleted only 
when no further links to it


• One can only unlink file, OS decides when to delete
19

1



Symbolic Links or Soft Links
• Another way to create link - This time in much 

simpler


• Hard links are limited - link to directory not 
possible


• Hard link to files in other disk not possible 


• I-node is unique within a file system


• Symbolic link or soft link creates a file by itself 


• The name can be different


• i-node number will be different  

• If the main file is deleted, link points to an 
invalid entry: dangling reference 

20



Beyond Files and Directories
• Mounting a file system connects the files to specific point in the directory tree


mount -t ext3 /dev/sda1 /home/users 

ls /home/users 

• Assembling directory tree from underlying file system


• Accomplished by mounting the file system


• Two tasks: making the file system and mounting


• Several devices and file systems are mounted on a typical machine


• Can be accessed with mount command

21



How can we build a simple File System?

22

What structures are needed in disk and how to access?



File System
• Organization of files and directories on disk


• OS has one more file systems


• File system is pure software, features: 


• Provide support for the sys calls


• Manage the storage of data


• No additional hardware support


• Great deal of flexibility when building FS


• Details vary with various file systems

23Image credits: Dalle-3



Breaking down into two main aspects 
• Lets try building a simple file system - Very Simple File System (VSFS) 

• In any FS, two key things make the difference


Data Structures 

• What types of on-disk data structures are utilized by the file system to organise its data 
and metadata?


• VSFS can make use of simple structures like array of blocks (complex ones: trees)


Access Methods 

• How can the calls like open(), read(), write(), etc made by process be mapped?


• Which structures are read during the execution of a system call?


• What about the efficiency?
24



Data structures
On-disk organisation of VSFS 
• Remember: Disk exposes a set of blocks


• File system has to organise the files into blocks - Data  

• The information about the files also have to be stored - metadata 

• Consider a disk with 64 blocks, each of size 4 KB (same sized blocks)


• 0 to 63 in general 0 to N-1 

• What needs to be stored in these blocks?

25



Data Region in the File System
Some blocks needs to be reserved for storing data - data region

26

• More information needs to be stored about where the data blocks are located, type of file, etc


• The inodes need to be stored



Some Space for Inodes!
• Dedicate some space for inode table


• This can hold an array of on-disk inodes


• Consider each inode takes 256 bytes and 5 blocks are dedicated


• Each block can hold 16 inodes => file system can hold 80 files 

27



We still miss something!
• FS needs some mechanism to track which inodes are free and which data 

blocks are free 


• How can such information be tracked? Which are free and which are available?


• Use bitmaps, each bit can be used to denote if corresponding block is free 
or not 


• 0 if the corresponding block is free 


• 1 if the corresponding block is allocated


• In our vsfs - 80 inodes and 56 blocks for data 


• Assume that we dedicate two blocks for bitmaps for inode and data
28



A more complete representation 

• Super block holds the entire organisation of all other blocks


• Which blocks are inodes, which are data blocks, where does data block start, where 
Inode begins, type of file system, etc


• During the mount, OS reads super block to initialise various parameters
29



30

Thank you 

Course site: karthikv1392.github.io/cs3301_osn 
Email: karthik.vaidhyanathan@iiit.ac.in 

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

