CS3.301 Operating Systems
and Networks

Persistence: Files and Directories

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

‘.] ; ..) INTERNATIONAL INSTITUTE OF

INFORMATION TECHNOLOGY

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems 1n Three Easy Pieces by Remzi et al.

~ B a A
The flow of access rdhetiom o ro |
(Weeds to _FQT;ZQ"L —~ Mewmory
_ _ . _ perform I/0 with disk)| =
* Application performs read or write to a file g j \ N /
Commun icates to OS
 CPU communicates to OS which invokes the R s e o
. (Mewmo
File System (FS) l \ !
File Systewm N A
 The OS may check in its cache if its already = Direct
there - | J Memory Access
Tresslafies address / (DMA) Transfer
. . . nrormalion - J
» FS prepares block level information to disk cV ot Dt

a)
controller /

Disk Coy\‘tro“er Either the CPU or Disk controller

* A Direct Memory Access (DMA) is set up can setup the DMA dependling
L | o on flow of data
 Disk controller performs the physical read or el ek
write based on commands from DMA and file - y N
system
Y Disk

e |fits read, Disk -> DMA, for writes, DMA ->
Disk

So far!

 Devices for Persistence

 Hard disk - Simple interface, store data in magnetic disks

 RAIDs provide support for improved capacity, performance and reliability
 What we still need!

 How to manage a persistence device?

 What about the APIs?

 What are some key implementation aspects!

4

Virtualization of Storage

» Just like memory, storage is virtualised
e Supported by file system

» User does not see disk but everything is
through two major abstractions

 Two Key abstractions
* Files

e Directories

Image source: Dalle-3

Files

* Linear array of bytes each of which can be read or written
 Each file has a human-readable name - “sample.pdf”

 Each file has a unique low-level name (not user given, OS given) - inode number
(i-number)

* Type of the file is not the concern of the OS (image, code, etc)
* File system should ensure that data is stored persistently
* Also ensures that data Is retrieved when requested

* Applications can worry about extensions and reading file in the way needed

Directories

* A directory is just like a file

* |t also has a low-level name: inode number
* Contains a list of pairs (user readable file name, i-node number)

* EQ: consider a directory name OSN
e (Lectures, 123) -> Directory
 (OSN_L23.pdf, 326) -> File

» Basically directory is a special type of files with contents: files, directories and
corresponding i-node numbers

Inode Number - Truth!

“In truth, | don't know either. It was just a term that we started to use. ‘Index’
Is my best guess, because of the slightly unusual file system structure that
stored the access information of files as a flat array on the disk...

Dennis Ritchie

The Unix Directory Tree
° * Files and directories arranged in a tree
e Directory hierarchy starts at root directory -
referred to as /

 Uses a separator to name subsequent
directories

 Absolute pathname can be used:

@ @ » /home/Documents/img.jpg
* File has two parts:
* Arbitrary name - “img”

& e S

* Everything is an abstraction by OS

9

File System Interface

* Everything in Unix is virtually a file

 Mainly the file system has to provide three interfaces
* Creation of files - Support creating files, allocate space
* Accessing files - Reading and writing files
* Deletion of files - Delete files and clear space

* Internally everything is 1s and Os in the disk so File system has a big responsibility!

10

Creation Interface

* open() system call with flag to create file
int fd = open(“sample”, O_CREAT | O_WRONLY, O_TRUNC, S_IRUSR | S_IWUSR);
 O_CREAT: creates afile if it does not exist
 O_WRONLY: file is write only
 O_TRUNGC: truncates file to zero bytes if it already exists
« S |IRUSR or S_IWUSR: permissions - make file readable or writeable
* The call returns a number, file descriptor: operations on file uses the file descriptor
* Existing files must be opened before they can be read or written

e close(): closes the file

11

Access Interface

e read () / write () system calls: Reading/writing files

file.txt
* Three arguments: file descriptor, buffer with data, fd 7
size ; T
e Buffer - where data will be placed and size - size of - <
buffer : :
 Reading and writing happens sequentially by default : 1 Reoud
COA
» Successive read/write calls fetches from the offset sequentially
that is being used
* Every process has three files opened - stdin, stdout, - -

stderr with fd 0, 1 and 2

12

Random Reading and Writing

* |n general file is accessed sequentially
» Read/write from beginning to end
 What if it needs to be randomly accessed for read/write?
» [seek() system call - seek to random offset
Iseek has nothing to do with disk
o Start reading and writing from random offset seek!
e off tIseek(int flides, off t offset, int whence);
* flides - file descriptor

o off_t - moves pointer to a given offset,

 \WWhence - determines how seek is performed (from an offset, from given + some
offset or size of file + offset 13

A Simple Example - Normal Read

Svstem calls Return Current
y Code Offset
fd = open(“file.txt”, O _RDONLY); 3 0
read (fd, buffer, 100); 100 100
read (fd, buffer, 100); 100 200
read (fd, buffer, 100); 100 300
read (fd, buffer, 100); 0 300
close(fd); 0 -

o Offset is initialised to 0 when opened

 For each read call, the offset is incremented fixed value - sequentially

e At the end, O denotes the read.has been completed

A Simple Example - Seeking

System calls Return Current
Code Offset
fd = open(“file.txt”, O_RDONLY); 3 0
Iseek(fd, 200, SEEK_SET); 200 200
read (fd, buffer, 50); 50 250
close(fd); 0 -

o Offset is initialised to 0 when opened
¢ |[seek sets the offset to 200

 Read call, reads the next 50 bytes and updates offset

There is a buffer - How to write immidiately?

» Regular writes, write() puts the data to buffer => ® 06

C : : : fsync example
some point it will be written to persistent storage

o #1nclude <stdio.h>
 This is done for performance enhancement

(keep in buffer for 5 to 30 seconds)

tnt main ()

* Some applications require more real-time L e (.)
in = open(sample”, ...);
guarantees assert (fd > -1):
, , , int rc = write (fd, buffer, size);
» System call: fsync(int fd): returns O, once write is assert (rc == size):
complete rc = fsync(fd);
assert(rc == 0);
 Sometimes fsync has to be called on directory return 0;

itself that contains the file

e This ensures that file is on disk

16

Metadata of files

* File system stores fair amount of data about files

e |nformation include: file size, last access, last modified, user id of the owner,
links count, pointers to data blocks, etc.

* This metadata is stored by file systems in a structure called inode
* Inode - persistent data structure used by the file system
* They store all the metadata information for a file

* [hey are stored In the disks but copies are cached to main memory when
needed!

17

Interface for Directories

* Directories can also be accessed like files
* Operations like create, open, read, close

* Create directory - mkdir() system call, when created its empty. It has two entries
 “7 And “..” ltself and the parent directory respectively

» Listing all the directories - Is command (internally - opendir(), readdir() and
closedir())

e What aboutrm * and rm -rf *? - Powerful double-edged sword!
* Directory entry contains information such as name, |-node number,

* Deleting directory - rmdir () - System call and command have same name

18

- N N Hard links

Hard Links

Hard linking creates another file that points to the
same i-node number (hence same underlying

prompt> echo hello > ftilel
prompt> cat filet
hello OSN Students

data) | .
prompt> Ln filel fileZ2

Assume a file, “file1” which just contains a string prompt> cat file2

“test” - What if we need file2 linked to this? hello OSN Students

Another file that links to this can be created using
link() call - In command

Essentially both files have same underlying data - KK K Hard links
just two different user-given names

I-node maintains a link count, file deleted only prompt> rm filel
when no further links to it removed "filel™

One can only unlink file, OS decides when to delete [SANECLoN RUNCY.
hello OSN Students

19

Symbolic Links or Soft Links

* Another way to create link - This time in much
simpler

 Hard links are limited - link to directory not

possible 000 Soft Links
» Hard link to files in other disk not possible prompt> echo "Hello OSN™ > Tilel
prompt> cat filel

. . . . Hello OSN
* |-node is unigue within a file system

prompt> Ln -s filel file2
prompt> cat file2

* Symbolic link or soft link creates a file by itself JEEREET
prompt> rm filel

» The name can be different promet= o L

 I-node number will be different

e |f the main file is deleted, link points to an
invalid entry: dangling reference

20

Beyond Files and Directories

 Mounting a file system connects the files to specific point in the directory tree
mount -t ext3 /dev/sdal /home/users
Is /home/users
* Assembling directory tree from underlying file system
 Accomplished by mounting the file system
 [wo tasks: making the file system and mounting
» Several devices and file systems are mounted on a typical machine

e Can be accessed with mount command

21

How can we build a simple File System?

What structures are needed in disk and how to access?

22

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

23

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

