CS3.301 Operating Systems
and Networks

Persistence: File System Implementation

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

‘ ‘) == INTERNATIONAL INSTITUTE OF
B LSRN INFORMATION TECHNOLOGY

DDDDDDDDD

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
e Operating Systems 1n Three Easy Pieces by Remzi et al.
e File System implementation by Youjip Won, Hanyang University

~ B a A
The flow of access rdhetiom o ro |
(Weeds to _FQT;ZQ"L —~ Mewmory
_ _ . _ perform I/0 with disk)| =
* Application performs read or write to a file g j \ N /
Commun icates to OS
 CPU communicates to OS which invokes the R s e o
. (Mewmo
File System (FS) l \ !
File Systewm N A
 The OS may check in its cache if its already = Direct
there - | J Memory Access
Tresslafies address / (DMA) Transfer
. . . nrormalion - J
» FS prepares block level information to disk cV ot Dt

a)
controller /

Disk Coy\‘tro“er Either the CPU or Disk controller

* A Direct Memory Access (DMA) is set up can setup the DMA dependling
L | o on flow of data
 Disk controller performs the physical read or el ek
write based on commands from DMA and file - y N
system
Y Disk

e |fits read, Disk -> DMA, for writes, DMA ->
Disk

Virtualization of Storage

» Just like memory, storage is virtualised
* Supported by file system

» User does not see disk but everything is
through two major abstractions

 Two Key abstractions
e Files

e Directories

Image source: Dalle-3

Metadata of files

* File system stores fair amount of data about files

e |nformation include: file size, last access, last modified, user id of the owner,
links count, pointers to data blocks, etc.

* This metadata is stored by file systems in a structure called inode
* Inode - persistent data structure used by the file system
* They store all the metadata information for a file

* [hey are stored In the disks but copies are cached to main memory when
needed!

How can we build a simple File System?

What structures are needed in disk and how to access?

File System

* Organization of files and directories on disk

e OS has one more file systems . QT R e

N, g1o101-110 1@

* File system is pure software, features:

00110, 1115

* Provide support for the sys calls
 Manage the storage of data
 No additional hardware support

* Great deal of flexibility when building FS

» Details vary with various file systems

Image credits: Dalle-3

Breaking down into two main aspects

e Lets try building a simple file system - Very Simple File System (VSFS)
* |Inany FS, two key things make the difference
Data Structures

 What types of on-disk data structures are utilized by the file system to organise its data
and metadata?

* VSFS can make use of simple structures like array of blocks (complex ones: trees)
Access Methods

 How can the calls like open(), read(), write(), etc made by process be mapped?

* Which structures are read during the execution of a system call?

 What about the efficiency?

Data structures

On-disk organisation of VSFS

* Remember: Disk exposes a set of blocks

* File system has to organise the files into blocks - Data

e The information about the files also have to be stored - metadata

* 0to 63 in general

O to N-1

e What needs to be stored in these blocks?

* Consider a disk with 64 blocks, each of size 4 KB (same sized blocks)

e
0 7

HIIHJ(

Ll

i
24 31

15 16

Ll

i

23

IHIIM

3

39 40

47 48

L
56 63

Data Region in the File System

Some blocks needs to be reserved for storing data - data region

Data Region]
L ITIIII]{ IIIIIIJ[.
0 / 15 16 24 31
) Data Region >
. . IIIINJ[.
32 39 40 47 48 56 63
D Data Region D Unallocated blocks

 More information needs to be stored about where the data blocks are located, type of file, etc

e The iInodes need to be stored

 Dedicate some space for inode table

* This can hold an array of on-disk inode

Some Space for Inodes!

S

* Consider each inode takes 256 bytes and 5 blocks are dedicated

 Each block can hold 16 inodes => file system can hold 80 files

) Inodes o Data Reﬂior\]
] II[IIIJ(IIIIIIJ{ o0
0 7 1516 24 31
< Do\‘tO\RegtOV\ g
8 w0 IIIIIIJ[o0
32 39 40 4748 56 63

D Data Region D Inodes D Unallocated blocks

We still miss something!

e S needs some mechanism to track which inodes are free and which data
blocks are free

e How can such information be tracked? Which are free and which are available?

* Use bitmaps, each bit can be used to denote if corresponding block is free
or not

* O if the corresponding block is free
* 1 if the corresponding block is allocated
* |n our vsfs - 80 inodes and 56 blocks for data

 Assume that we dedicate two blocks for bitmaps for inode and data

12

A
more complete representation

Inodes

—
—

Data Reﬁion

=

R
oosteetes [RRKIIR
Od ("‘ ’.‘"...
SR SIN
LIRS o%od o
s, RS

2,

IIINM

L

HIIIM

15 16

Data Re_s,;on

JIIIHJ[i
31

a0

0 L

32

D Data Region
D Inodes D Unallocated blocks

39 40

IIIHM

47 48

* Super bl |
p ock holds the entire organisation of all other blocks

kEGI i J[63

TR
%20, S8 %
0008 vy %%
bOSCSBIREL
03008 % %
»‘0’«,‘:;’0’0‘ a a TR
(R itma : (TR
LR LS 9
£ AR
%00, 20909
00 %S
2026 %% 0.9
DS S <)
RS
KKK AL

> | Super block

* Which blocks are |
. inodes, which a
Inode begins, type of file system. reet gata blocks, where does data block start, where

e During the mou
Nt
, OS reads super block to initialise various paramete
rs

13

[QJ
I M~
V4
o
" 5
N v
o0 -
N O
1 .m
J
1\ % 0
QP ~— 0
.Qru. o0 m .=
a 1 & o6
c @ &
L0 Y,
5 ANl g
c " -
O, QN K L
I .
Q S =2 o 3
@)) D an 0
[® . @ T X 5
O . O « it
o hmu % C — :
- =) v [
N © J [EXET
D Q O -5 O O
T = Y c D |
L o 0 = il
- O X u= i
T . b Q\l O g
()
Em - C 4p, %
c - 8 v 9
> e, 5
O Q 0 O T
nld -+ - -
G T 2 2
o e, - -~ r
Z - m ._H)
N - r_nlu = o —
C © ¢c©c oo =
c , o K 3
L o O =
g) O ._n_lu. %
O 2 o 3 ©
- £ 0O
© 5§ 3 8 S
H E o o o
o

16KB 20KB 24K RB 28KB 32KB

14

gKB 12KB

4KB

What does inode contain?

* inode contains all the information about a file - The metadata
* File type (regular file, directory, etc.)
* Size, number of blocks allocated to it
* Protection information (who can access, what access, etc.)
 Time information (modified time, access time, etc)

« Many more

15

Simplified EXT2 inode

Size Name What is this inode field for?

2 mode can this file be read/written/executed?

2 uid who owns this file?

4 size how many bytes are in this file?

4 time what time was this file last accessed?

4 ctime what time was this file created?

4 mtime what time was this file last modified?

4 dtime what time was this inode deleted?

4 gid which group does this file belong to?

2 links_count how many hard links are there to this file?

2 blocks how many blocks have been allocated to this file?
4 flags how should ext2 use this inode?

4 osd1 an OS-dependent field

60 block a set of disk pointers (15 total)

4 generation file version (used by NFS)

4 file_acl a new permissions model beyond mode bits
4 dir_acl called access control lists

4 faddr an unsupported field

12 |_osd?2 another OS-dependent field

Total 128 bytes

How can inode get
to data blocks?

More about iInodes

e Each inode needs to track disk block numbers of a file

* File data is not stored contiguously on disk

How to track multiple block numbers of a file?
Store pointer to the block inside the inode
Numbers of first few blocks are stored in inode itself

Each pointer can point to the location in the disk

block - direct pointers

What if the file size is large? - How many block

numbers can i-node store?

e Need for better mechanism

17

Ir\ode,

[D?re,c‘t Pointer 1

[Direc‘t Pownter 27

Dota Blocks
élock :',ZO
)/k Y,

Block €1

Size of one block is 4 KB here!

Indirect Pointers

* Jo support large files, few direct pointers
may not suffice!

Data blocks

| | node [J
e Point to a block that contains more)

pointers - indirect data block { J
» Each of the pointer can further point to |2t Torter </
\ Direct Pownter 2 J {]

data blocks e : : { J
Indirect Pointer 1

 Use a special pointer - indirect pointer

« The indirect block is allocated from the - " indirect dota block
data region

* |node array may have 12 direct pointers
and one indirect pointer

18

How much files can be supported?

Having one indirect pointer

e Each block is 4 KB

 Each inode can contain 12 direct pointers => 124 = 48 KB of file can be
addressed

e 1 Indirect pointer points to a block of size 4 KB
 Each address takes around 4 bytes
* |ndirect blocks can have around 1024 pointers (4 KB / 4)
* Jotal size of file that can be addressed = (12 + 1024) * 4K = 4144 KB

 What if the file is even larger? How can the inode capture all the blocks?

19

The Multi-Level Index

inodle. /]
P - ~ / { }
ZI ndirect Point er:/ % g /{]

Data

Block with po?nte_rs indlircect block Elocks

to indirect block

 Double indirect pointer: Points to a block with pointers to indirect block
 Each of the pointers in indirect block points to data blocks
e Size now that can be supported is 1024*1024*4 ~ 4GB

 For more even triple indirect pointers can be sought of

Why this direct and indirect pointers?

* One finding over many years of research: most of files are small
 Thus with small number of direct pointers, inode can point to 48 KB of data

e All that iIs needed is one or few indirect blocks

Most files are small 2K is the most common size
Average file size is growing Almost 200K is the average
Most bytes are stored in large files A few big files use most of space
File systems contain lots of files Almost 100K on average

File systems are roughly half full = Even as disks grow, file systems
remain “50% full

Directories are typically small Many have few entries; most
have 20 or fewer

““A Five-Year Study of File-System Metadata” by Nitin Agrawal, William J. Bolosky, John R. Douceur, Jacob R. Lorch. FAST 07, San Jose, California, February

2007.
21

What about Directories?

* Directory stores the mapping of file names and their inode numbers
 Each directory has two extra files

o “.”for current directory and “..” for parent directory

* Assume that a directory “OSN” has three files (I01, 102, lect03)

* Directory is a special type of file and has inode and data blocks (stores file records)

iInum reclen strien name
S 12 2 Inum - inode number
2 12 3 reclen - total bytes for name
12 12 4 101 strlen - length of the name
13 19 4 02 name - actual name
24 36 ! lect03

22

Free Space Management

S has to keep track of which inodes and data blocks are free
* Multiple methods can be used and many design choices exist. EQ:

 Use bitmaps for inodes and data blocks, store one bit per block to indicate free
Oor not

* Free list: Super block can store pointer to first free block which can then point
to next free block and so on.

 Eg: Linux FS such as ext2 and ext3 checks for sequence of blocks on new file
creation

* Sequence of data blocks are allocated contiguously for performance

* Pre-allocation policy is commonly used heuristic when allocating data blocks

23

Access: Reading File From Disks

S also needs better ways of managing access to file (apart from data structure)
* Eg: FS has been mounted and read issued to /OSN/IO1 - open, read, close
 Assume that file size is 12 KB (3 blocks in size)

» sys call open(“/OSN/I01”, O_RDONLY)
* |ntuitively: FS must traverse the pathname and locate the file

 \WWhat will be the process to achieve this?

24

Opening Files

* First part of read is always open sys call - Why?
* Jake the inode and load it in the memory for future operations
* Open returns file descriptor which points to in-memory |-node

* Reads and writes can access file data from I-node
* Assume a sys call open(“/OSN/lectures/I01.txt”, O_RDONLY)
* Traverse the path name and then locate desired inode
* Begin at the root of the FS (/), root inode number is 2 in Unix FS (mostly)

e S reads the block that contains inode number 2

25

Opening Files

* Recursively: Read the data blocks of root directory, find the name “lectures” and
get its inode number

* (Get inode of lectures -> get inode number of “l01.txt” -> get inode
 Keep repeating the process until the end of the path

 Read inode of “|01.txt” into memory, make final permission check

* Allocate file descriptor for this process and return file descriptor to user

* Allocation will be done in the in-memory open file table. It will be updated for
each read - offset

* In the case of new file, new inode and data blocks will be allocated using
bitmap and update directory entry

26

Open File Table

 Kernel uses a set of data structures to track all open files

* Global open file table

* One entry for every open file (stores also sockets, pipes, etc.)

* Entry points to the in-memory inode of the file (remember

opening of file)

 Per-process open file table

* Array of all the files that the process has opened

* File descriptor is index into the array

* Per process file entry -> global file table entry -> inode of file

* Every process has three files (stdin, stdout, err) open by

default

* Open system call creates entries in both table and returns file

descriptor number

27

G lobal Pile, ‘table

N |

node of |01.txt

18

&

J

d

\

Per process Ble table

Reading a File

 Make a call read() to read from file
 Read In the first data block of the file with help of inode
 Update the inode with last accessed time
 Update in-memory open file table for file descriptor, file offset
 Repeat the process for reading each block of data

* Once file is closed

* Just the file descriptor should be deallocated - No disk I/O

28

Timeline

Reading a File From Disk

doata mode root |ectures O
B?‘tMO\P B?JCMO\P ?V\OJQ Inode, Mode
open Q read reod
reod
reod
reod
PQO\(X () PCO\J
reod
write
re,o\cl Q) read
reod

write

Writes to a File

 Make a call write() to write into the file on the disk
 Data block may have to be allocated (if not overwriting)
* Need to update data bitmap and data block
» Total of five |/O:
* One to read data bitmap
* Write to data bitmap
* Two more to read and write the inode
* Write to the actual block itself

* |n case of creation of new file, number of I/Os can go really high!

30

Writing a File To Disk

datoa mode root |eetures 01

31

’oi‘tw\ap bitmap node imode inode.
create Q) read J
/lecture/101 e
reodl
reod
g reod
Q) write
é write
reoad
wrnt
wrnte <
write Q) reod
reod
wrnte wrnte
wrnte
v

Can we do something about performance?

 Reading and writing files are expensive

* |magine opening and reading a file by providing a long path
 Each inode needs to be fetched, corresponding data then read of files
 Can go upto 100s of I/0Os

* Use the concept of caching and buffering
 Use system memory to cache important blocks - Minimise overheads!
 Early FS, used fixed-size cache -> store popular blocks (10% at boot time)

» Use strategies like LRU to evict blocks

32

Caching and Buffering

o Static partitioning of memory is not always useful - Wastages!
 Modern systems employ dynamic partitioning approach
* |ntegrate virtual memory pages and FS pages into unified page cache
* First open may generate lot of I/O but subsequent will be in cache!
* Writes is little tricky as at some point the disk has to be accessed to store
* Write buffering - Delay writes to disk, perform batch |/O
* Schedule |/Os in a particular order for performance gain

* Writes can be avoided totally - file is created and deleted in few seconds!
(Don’t write)

33

Caching and Buffering

* Applications like DB avoids caching altogether - direct |/O
o System calls like fsync() allows writes to be pushed immidiately
 Unexpected data loss may happen since data is in memory
 Has impact on overall system performance

* At the end its all about trade-oft’s
e Durability vs Performance tradeoft
 Has big dependance on the application

e Browser vs Transactional database!

34

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

35

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

