
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Persistence: File System Implementation

https://karthikvaidhyanathan.com

 1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• Operating Systems in Three Easy Pieces by Remzi et al.
• File System implementation by Youjip Won, Hanyang University

2

The flow of access

3

• Application performs read or write to a file

• CPU communicates to OS which invokes the
File System (FS)

• The OS may check in its cache if its already
there

• FS prepares block level information to disk
controller

• A Direct Memory Access (DMA) is set up

• Disk controller performs the physical read or
write based on commands from DMA and file
system

• If its read, Disk -> DMA, for writes, DMA ->
Disk

Virtualization of Storage

• Just like memory, storage is virtualised

• Supported by file system

• User does not see disk but everything is
through two major abstractions

• Two Key abstractions

• Files

• Directories

4
Image source: Dalle-3

Metadata of files

• File system stores fair amount of data about files

• Information include: file size, last access, last modified, user id of the owner,
links count, pointers to data blocks, etc.

• This metadata is stored by file systems in a structure called inode

• Inode - persistent data structure used by the file system

• They store all the metadata information for a file

• They are stored in the disks but copies are cached to main memory when
needed!

5

How can we build a simple File System?

6

What structures are needed in disk and how to access?

File System
• Organization of files and directories on disk

• OS has one more file systems

• File system is pure software, features:

• Provide support for the sys calls

• Manage the storage of data

• No additional hardware support

• Great deal of flexibility when building FS

• Details vary with various file systems

7Image credits: Dalle-3

Breaking down into two main aspects
• Lets try building a simple file system - Very Simple File System (VSFS)

• In any FS, two key things make the difference

Data Structures

• What types of on-disk data structures are utilized by the file system to organise its data
and metadata?

• VSFS can make use of simple structures like array of blocks (complex ones: trees)

Access Methods

• How can the calls like open(), read(), write(), etc made by process be mapped?

• Which structures are read during the execution of a system call?

• What about the efficiency?
8

Data structures
On-disk organisation of VSFS
• Remember: Disk exposes a set of blocks

• File system has to organise the files into blocks - Data

• The information about the files also have to be stored - metadata

• Consider a disk with 64 blocks, each of size 4 KB (same sized blocks)

• 0 to 63 in general 0 to N-1

• What needs to be stored in these blocks?

9

Data Region in the File System
Some blocks needs to be reserved for storing data - data region

10

• More information needs to be stored about where the data blocks are located, type of file, etc

• The inodes need to be stored

Some Space for Inodes!
• Dedicate some space for inode table

• This can hold an array of on-disk inodes

• Consider each inode takes 256 bytes and 5 blocks are dedicated

• Each block can hold 16 inodes => file system can hold 80 files

11

We still miss something!
• FS needs some mechanism to track which inodes are free and which data

blocks are free

• How can such information be tracked? Which are free and which are available?

• Use bitmaps, each bit can be used to denote if corresponding block is free
or not

• 0 if the corresponding block is free

• 1 if the corresponding block is allocated

• In our vsfs - 80 inodes and 56 blocks for data

• Assume that we dedicate two blocks for bitmaps for inode and data
12

A more complete representation

• Super block holds the entire organisation of all other blocks

• Which blocks are inodes, which are data blocks, where does data block start, where
Inode begins, type of file system, etc

• During the mount, OS reads super block to initialise various parameters
13

File Organization: The inode
• Each inode is referred to by the inode number

• Using inode number, FS can locate inode, eg: inode number: 32

• Calculate offset into inode: 32 X (sizeof(inode)) = 32 * 256 = 8192 => 8 KB

• Add offset with start address of inode = 12KB + 8KB = 20KB

14

What does inode contain?

• inode contains all the information about a file - The metadata

• File type (regular file, directory, etc.)

• Size, number of blocks allocated to it

• Protection information (who can access, what access, etc.)

• Time information (modified time, access time, etc)

• Many more

15

Simplified EXT2 inode

16

Total 128 bytes

How can inode get
to data blocks?

More about inodes
• Each inode needs to track disk block numbers of a file

• File data is not stored contiguously on disk

• How to track multiple block numbers of a file?

• Store pointer to the block inside the inode

• Numbers of first few blocks are stored in inode itself

• Each pointer can point to the location in the disk
block - direct pointers

• What if the file size is large? - How many block
numbers can i-node store?

• Need for better mechanism
17

Size of one block is 4 KB here!

Indirect Pointers
• To support large files, few direct pointers

may not suffice!

• Use a special pointer - indirect pointer

• Point to a block that contains more
pointers - indirect data block

• Each of the pointer can further point to
data blocks

• The indirect block is allocated from the
data region

• Inode array may have 12 direct pointers
and one indirect pointer

18

How much files can be supported?
Having one indirect pointer

• Each block is 4 KB

• Each inode can contain 12 direct pointers => 12*4 = 48 KB of file can be
addressed

• 1 indirect pointer points to a block of size 4 KB

• Each address takes around 4 bytes

• Indirect blocks can have around 1024 pointers (4 KB / 4)

• Total size of file that can be addressed = (12 + 1024) * 4K = 4144 KB

• What if the file is even larger? How can the inode capture all the blocks?
19

The Multi-Level Index

• Double indirect pointer: Points to a block with pointers to indirect block

• Each of the pointers in indirect block points to data blocks

• Size now that can be supported is 1024*1024*4 ~ 4GB

• For more even triple indirect pointers can be sought of20

Why this direct and indirect pointers?
• One finding over many years of research: most of files are small

• Thus with small number of direct pointers, inode can point to 48 KB of data

• All that is needed is one or few indirect blocks

21

“A Five-Year Study of File-System Metadata” by Nitin Agrawal, William J. Bolosky, John R. Douceur, Jacob R. Lorch. FAST ’07, San Jose, California, February
2007.

What about Directories?
• Directory stores the mapping of file names and their inode numbers

• Each directory has two extra files

• “.” for current directory and “..” for parent directory

• Assume that a directory “OSN” has three files (l01, l02, lect03)

• Directory is a special type of file and has inode and data blocks (stores file records)

22

inum reclen strlen name
5 12 2 .
2 12 3 ..
12 12 4 l01
13 12 4 l02
24 36 7 lect03

inum - inode number

reclen - total bytes for name

strlen - length of the name

name - actual name

Free Space Management
• FS has to keep track of which inodes and data blocks are free

• Multiple methods can be used and many design choices exist. Eg:

• Use bitmaps for inodes and data blocks, store one bit per block to indicate free
or not

• Free list: Super block can store pointer to first free block which can then point
to next free block and so on.

• Eg: Linux FS such as ext2 and ext3 checks for sequence of blocks on new file
creation

• Sequence of data blocks are allocated contiguously for performance

• Pre-allocation policy is commonly used heuristic when allocating data blocks
23

Access: Reading File From Disks

• FS also needs better ways of managing access to file (apart from data structure)

• Eg: FS has been mounted and read issued to /OSN/l01 - open, read, close

• Assume that file size is 12 KB (3 blocks in size)

• sys call open(“/OSN/l01”, O_RDONLY)

• Intuitively: FS must traverse the pathname and locate the file

• What will be the process to achieve this?

24

Opening Files
• First part of read is always open sys call - Why?

• Take the inode and load it in the memory for future operations

• Open returns file descriptor which points to in-memory I-node

• Reads and writes can access file data from I-node

• Assume a sys call open(“/OSN/lectures/l01.txt”, O_RDONLY)

• Traverse the path name and then locate desired inode

• Begin at the root of the FS (/), root inode number is 2 in Unix FS (mostly)

• FS reads the block that contains inode number 2
25

Opening Files
• Recursively: Read the data blocks of root directory, find the name “lectures” and

get its inode number

• Get inode of lectures -> get inode number of “l01.txt” -> get inode

• Keep repeating the process until the end of the path

• Read inode of “l01.txt” into memory, make final permission check

• Allocate file descriptor for this process and return file descriptor to user

• Allocation will be done in the in-memory open file table. It will be updated for
each read - offset

• In the case of new file, new inode and data blocks will be allocated using
bitmap and update directory entry

26

Open File Table
• Kernel uses a set of data structures to track all open files

• Global open file table

• One entry for every open file (stores also sockets, pipes, etc.)

• Entry points to the in-memory inode of the file (remember
opening of file)

• Per-process open file table

• Array of all the files that the process has opened

• File descriptor is index into the array

• Per process file entry -> global file table entry -> inode of file

• Every process has three files (stdin, stdout, err) open by
default

• Open system call creates entries in both table and returns file
descriptor number 27

Reading a File

• Make a call read() to read from file

• Read in the first data block of the file with help of inode

• Update the inode with last accessed time

• Update in-memory open file table for file descriptor, file offset

• Repeat the process for reading each block of data

• Once file is closed

• Just the file descriptor should be deallocated - No disk I/O

28

Reading a File From Disk

29

Writes to a File
• Make a call write() to write into the file on the disk

• Data block may have to be allocated (if not overwriting)

• Need to update data bitmap and data block

• Total of five I/O:

• One to read data bitmap

• Write to data bitmap

• Two more to read and write the inode

• Write to the actual block itself

• In case of creation of new file, number of I/Os can go really high!
30

Writing a File To Disk

31

Can we do something about performance?

• Reading and writing files are expensive

• Imagine opening and reading a file by providing a long path

• Each inode needs to be fetched, corresponding data then read of files

• Can go upto 100s of I/Os

• Use the concept of caching and buffering

• Use system memory to cache important blocks - Minimise overheads!

• Early FS, used fixed-size cache -> store popular blocks (10% at boot time)

• Use strategies like LRU to evict blocks
32

Caching and Buffering
• Static partitioning of memory is not always useful - Wastages!

• Modern systems employ dynamic partitioning approach

• Integrate virtual memory pages and FS pages into unified page cache

• First open may generate lot of I/O but subsequent will be in cache!

• Writes is little tricky as at some point the disk has to be accessed to store

• Write buffering - Delay writes to disk, perform batch I/O

• Schedule I/Os in a particular order for performance gain

• Writes can be avoided totally - file is created and deleted in few seconds!
(Don’t write)

33

• Applications like DB avoids caching altogether - direct I/O

• System calls like fsync() allows writes to be pushed immidiately

• Unexpected data loss may happen since data is in memory

• Has impact on overall system performance

• At the end its all about trade-off’s

• Durability vs Performance tradeoff

• Has big dependance on the application

• Browser vs Transactional database!
34

Caching and Buffering

35

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

