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OS: An Overview
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Process Virtualization
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States of the Process
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Process Management API
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Switching Between Process
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Process Scheduling
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Memory Virtualization
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Memory Management
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Segmentation

Generalized Base and Bounds

* Only used memory is allocated in physical memory

* Allows allocating large address space

e Sparse address space

» Different segments per process - code, stack, heap | S T
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Paging
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Paging - TLB
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Concurrency and Parallelism
What is what?
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Source: https://freecontent.manning.com/concurrency-vs-parallelism/



Locks and Condition Variables

Concurrency
Threads needs
Accessing Shared to <icnal
: O S\ﬁna O\W\OV\?
Va\ﬁo\,ole/ memory Them
Locks Condition Variables
Hardware Primitives Use. S?gno\l and Wait
Software locks Adds threads to queues
when Wod‘t?na

Combination of Locks and Condition VO\r‘ioJoles Mol be required
to accomplish different tasks



Semaphores
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Disks: An Overview

Rotates this Wy

* Disk rotates on a spindle

 The arm can move across (seek) or stay
as the disk rotates

e The head is used to read/write

 Data is arranged in tracks as blocks/
sectors

 There are 100s of tracks on a single disk

* Seek, rotate and transfer - three key
phases
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RAIDs

RAID Levels
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Breaking down into two main aspects

 We worked on building a Very Simple File System (VSFS)
* In any FS, two key things make the difference

Data Structures

* Inode - Data structure for each file

o Store inodes, data, mapping to inodes, etc in a large array
Access Methods

o Start with the root

* [raverse through the path using inode mapping

» Caching can be used to improve efficiency
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The overall Journey
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What next?
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Course Restructuring

* Fresh perspective to the OSN course this year
 Adopted different set of books:
 Modified the grading scheme - More weightage to projects
* |ntroduced course project (group)
* 3 Mini projects
* Every project had a network component
 OS + Networks were kept more intertwined
* Countless hours of brainstorming with former students + TAs

 Feedbacks are always welcome!!
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SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere
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