CS3.301 Operating Systems
and Networks

OS: Overall Run Down and Concluding Thoughts!

Karthik Vaidhyanathan

https://karthikvaidhyanathan.com

it ‘i 3 ."'
: ‘ ’ == INTERNATIONAL INSTITUTE OF
- - INFORMATION TECHNOLOGY

DDDDDDDDD

https://karthikvaidhyanathan.com

Acknowledgement

The materials used 1n this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:

e Operating Systems 1n Three Easy Pieces by Remzi et al.
e Different materials used throughout the course

OS: An Overview

Ope,f‘o\“tinﬁ Sc/s‘tems

Three Pil lod‘S

y ~ 3

Virctualization Concurrency Persistence

_ Y, _ Y,

Process and memory Support concurrent Storage management
virtualization processing and processing

Process Virtualization

Process Virtualization

Y WAV O OOV)

Each Process OS should be able

Peels that it has to switch between process
ts own CPU

& J

1. Suppor“t Por Qon‘tex't switch

1. Process has different states
A. Process Scheduhng

A P FOCESS Moma\s,e_men‘t API

States of the Process

Process State Transitions

Descheduled

Scheduled

/0 Initiate 1/0 done

Remember: Process lists
Blocked and Process Control Blocks

Process Management API

Memory image of a process - Code, data, stack, and heap

Process 4PI
ForkQ) exec() wout Q) e ot ()
Create child Runs an executable Block the Terminate
process parent process a process

Switching Between Process

OS should be oJole,

to switch between process

J

Process
qves control

_

Cooperative approach
(Non Pre,ew\p‘tive, Appr‘oach)

_J

SI/S‘te,W\ calls

OS
tokes control

_

A/on-CooPe,r‘a\‘tive, Approach
(Preemp‘tive, Approaclr\)

J

Interrupts

Limted Direct Execution +
Interrupt Descriptor T able

Process Scheduling

e

First Come First Serve
(FCFS)

Process Sche,duhns,

~

C onvoy effect

Shortest Job First
(STF)

,

Shortest Time
Comple‘tion First (STCF)

J

Tum around time

J

RQSPOV\SC Time

_

Round Robin

0%

Expec‘ted :\ob
length./

-«

Multi-level
Feedback Queue

J

Gve. pﬁoﬁty to
AOBS

Memory Virtualization

K

Process

)

requires

g

=

Memom/ ACCLSS

_

Me,mon/ Momo\ﬁe_me_n‘b

e —

Memory Management

¢ >

Me_mon/ Momage_me_nt

£ ™
Base and Bounds Segmen’to\‘tion Pag?mj

" J & o & o
Bose reg}s‘ter Generalized Base and bounds D3V3JM3 VA and PA into Bixed chunks
and bounds re,flis'ter

(For each se_gme_n’t there s a (Translation with the he_lp of a page

(:)uS't add and check base oand bounds that ne_e_ds to 'toxue,)
if less than bounds for be “SSI‘J"CJ>

translation)

Segmentation

Generalized Base and Bounds

* Only used memory is allocated in physical memory

* Allows allocating large address space

e Sparse address space

» Different segments per process - code, stack, heap | S T
* For translation: use first bits to identify segments free
and perform translation i /f
r!' Stack
 Results in External fragmentation Poe e
| free

Paging

&

Paging

J

T

Splitting to
fixed sized chunks in

/

Sph't'timj to

fixed sized chunks in

T~

P

L

Physical Address Space

~

v

(G 2
Victual Address Space
_ \ o
Gives the VPN (.
&

Po\s,e, Table_

J

Pouje, table contains
mopping between VPN and PFN

e

translotes t
‘\

7

PFN

Page Tables

py
Process
G
hasl one
0
Page Table
G

has many

VPN

¢ >
Page table entries
. W
has
\
£)
fapping
W : J
(of Form
PFN ‘Vo\lid Prot | Present | last ac Dirty

13

Paging - TLB

g)
CPU
_)
has an
(o)
MMU
L | -
has a
\/
r 2 (. 2
Translation lookaS?de, Buffer ho = TS S
S s Cached Mapping
. J . | .

'of Form

L VPN T PEN LO'the_r ewsm

V

1. Load address 2b. Check with MMU

! !

L. Check The m‘te,rno\l 2c. Check inside TLB

CPU cache
2c.l Get the physical
NO ves > address, retum to
TLB wt? CPU
Aa Extract physical Ae. Look up :
address 'thr*ouf/h 'tlf\e, P Osae
table
2c.d Get the

translation (PTE)

}

204 Updote TLB The overall address

with translation

] translation Process

Ac.5. Re,tr‘y
nstruction

V

5. Get PA and
access

Concurrency and Parallelism
What is what?

Tz k> — CHOP

.............. S STIR Kz zk> SYIR

16

Source: https://freecontent.manning.com/concurrency-vs-parallelism/

Locks and Condition Variables

Concurrency
Threads needs
Accessing Shared to <icnal
: O S\ﬁna O\W\OV\?
Va\ﬁo\,ole/ memory Them
Locks Condition Variables
Hardware Primitives Use. S?gno\l and Wait
Software locks Adds threads to queues
when Wod‘t?na

Combination of Locks and Condition VO\r‘ioJoles Mol be required
to accomplish different tasks

Semaphores

Binart/

Semo\phore,

Se_w\aphor‘es

_J

Locks

—

Two kev./ opera‘tionsz woul Q omd PoS’tQ
Ini‘tializa‘tion of semaphore Inolcls The ke,c/

18

Can work y Work as

Condition
Vo\ﬁoxbles

S?ﬁnals
to k/o\?‘t?na
threads

4)
- Applica\‘tion on CPU S

Persistence Neodls to |5~ Memory

Pe,rporm I/O with disk) e

- |
Communicates to OS T
which intrum invokes Facilitate Direct

V Set wp Interaction with

= System — -
e e Dsrect
L | y Me,mom/ Access
ranslates address
T o Lok [eve|e / k (DMA) Tf‘omspe,r‘)
inFormation

YV Get Data

: ¥

Dick Controller

Either the CPU or Disk controller
can Se'tup ‘the DMA Jqoendim:j

~ | g on flow of data
Interact with the
physical disk
Vv
a)

Disk

Disks: An Overview

Rotates this Wy

* Disk rotates on a spindle

 The arm can move across (seek) or stay
as the disk rotates

e The head is used to read/write

 Data is arranged in tracks as blocks/
sectors

 There are 100s of tracks on a single disk

* Seek, rotate and transfer - three key
phases

20

RAIDs

RAID Levels
L Vo L
RAID O IRALID 1 RAID 4 RAID 5
1. Round robin 1. Mirroring 1. Parity block 1. Distrbuted Par‘?‘ty
2. Capacity N 2. Capacity N/2 2. Capacity N-1 2 Redundancy of 1
3. No r‘e,dundomct/ 3. Redundomct/ 1 3. Redur\domct/ 1 3. Copacity N-1

4. Small writes

21

Breaking down into two main aspects

 We worked on building a Very Simple File System (VSFS)
* In any FS, two key things make the difference

Data Structures

* Inode - Data structure for each file

o Store inodes, data, mapping to inodes, etc in a large array
Access Methods

o Start with the root

* [raverse through the path using inode mapping

» Caching can be used to improve efficiency

22

The overall Journey

OS runs many
processes and

handles
communication

How this
is achieved

Getting the base right

What if processes
store data
across network

Can all run\
/ at the same time
share memory and
\ communicate? ®

\ (o]

ceeoeee

|
= ‘I

[

—_—
Building concurrent processes

. Building a network file system
that can communicate

Timeline

Process and Memory
Virtualization

Networking intro

This Course

Concurrency Persistence

Addressing and Routing Network file Systems

23

What next?

L

Intro to

Compu'ter
Sl/S‘t ems Orﬁa\niza‘t?on

Advanced

<

v

Opero\‘tinﬁ SL/s‘te_ms andl

Software SL/S‘E ems

Networks

Computer Architecture

\.

Data

J

>

SL/S'te,MS

Compilefs

Sys‘tew\s

Advanced Ope,r‘o\‘tinﬁ

P

)| | Advanced Compu‘te,r
Networks

Distributed
Sys‘te,ms

Many other course as well. These
are some logical options

Design ond Analysis
of Software Systems

Software
Englneeﬁnﬁ

-

Top?cs n
Software Engine,e,ﬁnﬁ

W,

Course Restructuring

* Fresh perspective to the OSN course this year
 Adopted different set of books:
 Modified the grading scheme - More weightage to projects
* |ntroduced course project (group)
* 3 Mini projects
* Every project had a network component
 OS + Networks were kept more intertwined
* Countless hours of brainstorming with former students + TAs

 Feedbacks are always welcome!!

25

The Team! Many Thanks to all TAs

Sarthak Bansal

Karthik Vaidhyanathan Jhalak Akhilesh Banzal

Swayam Agrawal Vineeth Bhat Vyom Goyal

SCAN ME

Thank you

Course site: karthikv1392.github.io/cs3301 osn
Email: karthik.vaidhyanathan@iiit.ac.in
Twitter: @karthi_ishere

27

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

