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Ideal Fair Scheduling



What is Ideal Fair Scheduling?

• Imagine a perfectly divisible CPU that can run all tasks truly simultaneously.
• Each runnable task i receives exactly its proportional share wi∑

w of CPU at every
instant.

• No task ever falls behind its entitled share.
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Why Ideal Fair Scheduling is Impossible

• Real CPUs are discrete: only one task runs per core at a time.
• Must approximate fairness over a time window.
• Context switches and timer ticks introduce overhead.
• CFS approximates the ideal by tracking vruntime and alternating tasks.

Key Idea
CFS simulates the ideal fair scheduler by ensuring no task lags too far behind in
virtual time.
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Big Picture



Why CFS?

• Goals: fairness, low latency for interactive tasks.
• Replaces O(1) scheduler since Linux 2.6.23 (2007) (why?). CFS has also been

replaced now (why?).
• Core idea: virtual runtime (vruntime) makes CPU time comparable across tasks.
• Fair ̸= equal wall time: weight by priority/nice.
• No Heuristics
• Elegant handling of I/O and CPU bound processes.
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Fairness by Virtual Time

• Each runnable task has a weight w derived from nice (0: 1024; ∆nice=+1
halves weight).

• vruntime increases with actual runtime scaled by 1024
w .

• CFS always picks task with the smallest vruntime (most “unfairly treated”).

∆v = ∆t · 1024
w(nice)
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Runqueue Design



Data Structures

• One rq per CPU.
• Each rq maintains a red-black tree of

runnable tasks keyed by vruntime.
• (timer interrupt happens) Leftmost node

⇒ smallest vruntime ⇒ next to run.
• Complexity: insert/remove O(log N),

pick O(1).
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Picking the Next Task

• enqueue: insert task into RB-tree at vruntime = max(task.v, rq.min).
• dequeue: remove current task when it blocks or exits.
• pick_next_entity: leftmost node of RB-tree.
• preemption: if a newly awakened task has smaller vruntime than current by a

threshold.
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Timing and Quanta



How Long Does a Task Run?

• No fixed timeslice; CFS targets ideal fairness within a window
T = sched_latency_ns.

• With N runnable tasks, ideal slice: T
N , but bounded by min_granularity_ns.

• Tickless kernels: periodic updates via hrtimers; sched_tick() maintains
vruntime.

Key Knobs

sysctl effect

kernel.sched_latency_ns fairness window T
kernel.sched_min_granularity_ns min slice
kernel.sched_wake_up_granularity_ns preempt threshold
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Sleep, Wake, and Interactivity



Sleep/Wake Path

• Blocking I/O: task dequeues; vruntime frozen.
• Wakeup: vruntime adjusted near current rq.min_vruntime to avoid unfair head

starts.
• Interactive boost emerges naturally: sleepers do not accumulate vruntime while

others do.
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Preemption and Granularity

• Preempt current if vnew + G < vcurr , where G is wakeup granularity.
• Prevents thrashing between near-equal entities.
• Tunables balance latency (UI snappiness) vs throughput.
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Priorities and Shares



Nice Levels and Weights

• Nice ∈ [−20, 19] maps to weights
w .

• Ratio of shares = wi∑
w determines

CPU fraction.
• Example: nice 0 vs nice 5:

1024
335 ≈ 3.05× more CPU.

nice weight

-5 3350
0 1024
5 335

10 110
15 36
19 15
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Walkthrough



Mini Example

Three tasks A:B:C with weights 1024:1024:512.
Ideal shares: 40% : 40% : 20%.

1. Start: all v = 0. Pick A (leftmost). After ∆t, vA = ∆t.

2. Insert back, pick B (now smallest v). After ∆t, vB = ∆t.

3. Pick C; scaled by weight: ∆vC = 2 ∆t.

4. After several cycles, vA ≈ vB ≈ vC and observed CPU time follows shares.
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Complexity and Trade-offs



Complexity

• Insert/erase: O(log N); pick leftmost: O(1) (how?).
• Per-CPU state keeps cache locality.
• Overheads grow with runnable tasks per CPU (not threads per system).
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Pros and Cons

Pros
• Strong fairness model.
• Good interactive latency.

Cons
• RB-tree adds O(log N) overhead.
• Tuning needed for extremes (HPC vs

desktop).
Is CFS truly fair on multiprocessor systems?
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Further Reading

• Ingo Molnár, Peter Zijlstra: CFS design discussions (LKML archives).
• Linux Kernel Development Robert Love.
• Understanding the Linux Kernel Bovet, Cesati.
• Linux kernel source: kernel/sched/fair.c.
• Man pages: sched(7), nice(1).
• Linux Implementation Details
• Overview of CFS
• The Linux Scheduler: a Decade of Wasted Cores
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https://www.youtube.com/watch?v=DE8CchdiLRg
https://www.youtube.com/watch?v=MkJfuI5_hjc 
https://dl.acm.org/doi/pdf/10.1145/2901318.2901326


Questions?
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