
Completely Fair Scheduler (CFS)
Linux CPU Scheduling

Prakhar Jain
August 23, 2025

Operating Systems and Networks



Agenda

Ideal Fair Scheduling

Big Picture

Runqueue Design

Timing and Quanta

Sleep, Wake, and Interactivity

Priorities and Shares

Walkthrough

Complexity and Trade-offs

References

2/16



Ideal Fair Scheduling



What is Ideal Fair Scheduling?

• Imagine a perfectly divisible CPU that can run all tasks truly simultaneously.
• Each runnable task i receives exactly its proportional share wi∑

w of CPU at every
instant.

• No task ever falls behind its entitled share.

3/16



Why Ideal Fair Scheduling is Impossible

• Real CPUs are discrete: only one task runs per core at a time.
• Must approximate fairness over a time window.
• Context switches and timer ticks introduce overhead.
• CFS approximates the ideal by tracking vruntime and alternating tasks.

Key Idea
CFS simulates the ideal fair scheduler by ensuring no task lags too far behind in
virtual time.

4/16



Big Picture



Why CFS?

• Goals: fairness, low latency for interactive tasks.
• Replaces O(1) scheduler since Linux 2.6.23 (2007) (why?). CFS has also been

replaced now (why?).
• Core idea: virtual runtime (vruntime) makes CPU time comparable across tasks.
• Fair ̸= equal wall time: weight by priority/nice.
• No Heuristics
• Elegant handling of I/O and CPU bound processes.

5/16



Fairness by Virtual Time

• Each runnable task has a weight w derived from nice (0: 1024; ∆nice=+1
halves weight).

• vruntime increases with actual runtime scaled by 1024
w .

• CFS always picks task with the smallest vruntime (most “unfairly treated”).

∆v = ∆t · 1024
w(nice)

6/16



Runqueue Design



Data Structures

• One rq per CPU.
• Each rq maintains a red-black tree of

runnable tasks keyed by vruntime.
• (timer interrupt happens) Leftmost node

⇒ smallest vruntime ⇒ next to run.
• Complexity: insert/remove O(log N),

pick O(1).

10

6

4 9

14

12 17

7/16



Picking the Next Task

• enqueue: insert task into RB-tree at vruntime = max(task.v, rq.min).
• dequeue: remove current task when it blocks or exits.
• pick_next_entity: leftmost node of RB-tree.
• preemption: if a newly awakened task has smaller vruntime than current by a

threshold.

8/16



Timing and Quanta



How Long Does a Task Run?

• No fixed timeslice; CFS targets ideal fairness within a window
T = sched_latency_ns.

• With N runnable tasks, ideal slice: T
N , but bounded by min_granularity_ns.

• Tickless kernels: periodic updates via hrtimers; sched_tick() maintains
vruntime.

Key Knobs

sysctl effect

kernel.sched_latency_ns fairness window T
kernel.sched_min_granularity_ns min slice
kernel.sched_wake_up_granularity_ns preempt threshold

9/16



Sleep, Wake, and Interactivity



Sleep/Wake Path

• Blocking I/O: task dequeues; vruntime frozen.
• Wakeup: vruntime adjusted near current rq.min_vruntime to avoid unfair head

starts.
• Interactive boost emerges naturally: sleepers do not accumulate vruntime while

others do.

10/16



Preemption and Granularity

• Preempt current if vnew + G < vcurr , where G is wakeup granularity.
• Prevents thrashing between near-equal entities.
• Tunables balance latency (UI snappiness) vs throughput.

11/16



Priorities and Shares



Nice Levels and Weights

• Nice ∈ [−20, 19] maps to weights
w .

• Ratio of shares = wi∑
w determines

CPU fraction.
• Example: nice 0 vs nice 5:

1024
335 ≈ 3.05× more CPU.

nice weight

-5 3350
0 1024
5 335

10 110
15 36
19 15

12/16



Walkthrough



Mini Example

Three tasks A:B:C with weights 1024:1024:512.
Ideal shares: 40% : 40% : 20%.

1. Start: all v = 0. Pick A (leftmost). After ∆t, vA = ∆t.

2. Insert back, pick B (now smallest v). After ∆t, vB = ∆t.

3. Pick C; scaled by weight: ∆vC = 2 ∆t.

4. After several cycles, vA ≈ vB ≈ vC and observed CPU time follows shares.

13/16



Complexity and Trade-offs



Complexity

• Insert/erase: O(log N); pick leftmost: O(1) (how?).
• Per-CPU state keeps cache locality.
• Overheads grow with runnable tasks per CPU (not threads per system).

14/16



Pros and Cons

Pros
• Strong fairness model.
• Good interactive latency.

Cons
• RB-tree adds O(log N) overhead.
• Tuning needed for extremes (HPC vs

desktop).
Is CFS truly fair on multiprocessor systems?

15/16



References



Further Reading

• Ingo Molnár, Peter Zijlstra: CFS design discussions (LKML archives).
• Linux Kernel Development Robert Love.
• Understanding the Linux Kernel Bovet, Cesati.
• Linux kernel source: kernel/sched/fair.c.
• Man pages: sched(7), nice(1).
• Linux Implementation Details
• Overview of CFS
• The Linux Scheduler: a Decade of Wasted Cores

16/16

https://www.youtube.com/watch?v=DE8CchdiLRg
https://www.youtube.com/watch?v=MkJfuI5_hjc 
https://dl.acm.org/doi/pdf/10.1145/2901318.2901326


Questions?

16/16


	Ideal Fair Scheduling
	Big Picture
	Runqueue Design
	Timing and Quanta
	Sleep, Wake, and Interactivity
	Priorities and Shares
	Walkthrough
	Complexity and Trade-offs
	References

