
TUTORIAL-2
C-SHELL

OSN

PROCESSES

FOREGROUND AND BACKGROUND PROCESSES

EXEC COMMANDS

FILE DESCRIPTORS

PIPING

RAW AND COOKED MODE

TODAY'S AGENDA

As its been covered previous time, processes have their own
unique ID with which they can be identifies.

Try typing “ps” on your terminal to find out the processes
that our currently running and their pid.

01

But the question is : Are all these processes running in a
similar fashion?
They are not.

02

PROCESSES

FO
R

EG
R

O
U

N
D

 &
BA

C
K

G
R

O
U

N
D

PR
O

C
ESS

PROCESSES CAN BE DIVIDED IN TWO
CATEGORIES WIDELY :

I. FOREGROUND PROCESSES
II. BACKGROUND PROCESSES

BY DEFAULT, PROCESSES RUN IN THE
FOREGROUND. TO RUN ANY COMMAND IN THE
BACKGROUND, TYPE AN AMPERSAND (&) AT THE
END OF THE COMMAND.

A FOREGROUND PROCESS HAS ACCESS TO THE
CONTROLLING TERMINAL, AND THE SHELL WAITS
FOR IT TO END BEFORE IT CAN RESUME ITS
OPERATION.

HOWEVER, A BACKGROUND PROCESS AS THE
NAME SUGGESTS RUNS IN THE BACKGROUND AND
HAS NO USER INTERACTION AND DOES NOT
HAVE ACCESS TO THE CONTROLLING TERMINAL.

IT CANNOT READ FROM STDIN, BUT IT CAN OUTPUT
TO STDOUT.

HAVING THE PARENT WAIT BEFORE THIS CHILD
COMPLETES CAN BE BENEFICIAL IN SOME
CASES.

WAIT() IS THE SYSTEM CALL THAT YOU ARE
LOOKING FOR HERE. THIS IS A BLOCKING
COMMAND, AND IT MAKES THE PARENT WAIT
UNTIL ONE OF ITS CHILD TERMINATES.

WAITPID(PID_T PID) IS ANOTHER SYSTEM
CALL THAT CAN BE USED FOR THIS PURPOSE
WHICH WAITS FOR THE CHILD WITH PROCESS
ID PID TO TERMINATE.

WAIT...

exec replaces the current process image with a new process
image that is specified in it’s arguments.
How is it useful?
Fork a new process from within a process. This process is
duplicate of what you were running but then run exec and
BOOM! You have a totally new process with a different
functionality at hand.

execl/execv: When you know the exact path to the
executable and want to provide arguments either as a list
(execl) or an array (execv).
execlp/execvp: When you want the system to search for the
executable in the PATH environment variable.
execle/execve: When you need to provide a custom
environment for the new process.

REAL POTENTIAL OF FORK
EXEC()

FILE DESCRIPTORS

FILE DESCRIPTORS

A file descriptor is a numeric identifier for an open
file, with 0 for stdin, 1 for stdout, and 2 for stderr.
The kernel maintains a table of open file descriptors
for each process, which maps these numbers to
structures (struct fd in Linux) containing file details.
This structure includes a pointer to an open file
description.

FILE DESCRIPTORS WITH FORK()

After a fork() call, the child process inherits file
descriptors from the parent, but both processes share
the same open file description and file buffer.
Changes to the file (reading or writing) by one
process affect the shared file description and buffer,
impacting the other process as well.

DUP AND PIPE

dup duplicates an existing file descriptor to the lowest available file descriptor.
dup2 duplicates an existing file descriptor to a specified file descriptor, closing the
target if it is already open.
Both functions allow redirection of standard input/output by duplicating descriptors
like stdin, stdout, or stderr to/from files or pipes.

DUP AND DUP 2

A pipe is a unidirectional communication channel with a read end and a write end.
It is created using the pipe() system call, which provides two file descriptors: one for
reading and one for writing.
Piping enables data to flow between processes, where one process writes to the pipe,
and another reads from it.

PIPING

In the wr i te r process : dup2(pipefd[1] , STDOUT_FILENO) red i rects the

standard output to the p ipe's wr i te end.
In the reader process : dup2(pipefd[0] , STDIN_FILENO) red i rects the
standard input to the p ipe's read end.
Th is setup a l lows one process to send data d i rect ly to another th rough
the p ipe, us ing dup/dup2 to handle the red i rect ion.

USING DUP IN PIPING

RAW MODE AND COOKED MODE

TERMINAL

Definition: In raw mode, the input is passed directly to the
program without any processing by the terminal driver. This
means that characters are delivered to the program immediately
as they are typed, without waiting for a newline (Enter) and
without any interpretation (e.g., no special handling of Ctrl+C,
Ctrl+Z, backspace, etc.).
Use Cases: Raw mode is typically used in programs that need
real-time input handling, like games, text editors, or command-
line tools that require immediate response to each keystroke.

RAW MODE

Definition: In cooked mode (also known as canonical mode),
the terminal driver processes the input before it is sent to the

program. Input is typically line-buffered, meaning that it is only
sent to the program after the user presses Enter. The terminal

driver also interprets special characters, such as backspace for
deleting characters and Ctrl+C for sending an interrupt signal.

Use Cases: Cooked mode is suitable for most standard
command-line applications where line-by-line input is

sufficient, and where special handling (like signal generation on
Ctrl+C) is desired.

COOKED MODE

READ MAN PAGES.
WRITE MODULAR CODE.
START ON TIME.

PRO TIP

THANK YOU!

