
Introduction to XV6

OSN Tutorial 5

What is XV6?
A “toy” operating system developed at MIT
Based on Unix v6 (hence the name)
Provides the basic interfaces introduced in Unix
and also mimics Unix’s internal design.
Processes, files and directories, paging, RR
scheduling, interrupts...

Installation
https://pdos.csail.mit.edu/6.S081/

2020/tools.html

Try using hotspot if it doesn’t
download on IIIT network.

Also test your installation, as
mentioned in the bottom of the

page

https://pdos.csail.mit.edu/6.S081/2020/tools.html
https://pdos.csail.mit.edu/6.S081/2020/tools.html

Running XV6
After installing, run make qemu in the directory where you
cloned xv6.
You should see an output like this (with more lines before
xv6 kernel is booting if its your first time running make
qemu):

Making a User Program

Create a C file for the actual function (if needed).1.
Edit the makefile -- update UPROGS2.

Making a Syscall
Define a mapping for your syscall in syscall.h1.
Add your function prototype and array entry for the
same thing in syscall.c (see how other syscalls have
been added)

2.

Define the function for your syscall in sysproc.c3.
Make whatever changes you need to make (depends on
the syscall you are adding)

4.

this is just an outline so that you have a rough idea of
what to do
(some) other important files: proc.h, proc.c, trap.c, defs.h

Some resources
https://github.com/YehudaShapira/xv6-
explained/blob/master/Explanations.md

xv6 book (for reference):
https://pdos.csail.mit.edu/6.828/2023/xv6/book-
riscv-rev3.pdf

https://www.youtube.com/playlist?
list=PLbtzT1TYeoMhTPzyTZboW_j7TPAnjv9XB

The types of sockets
Stream sockets

SOCK_STREAM

Use TCP
Reliable, errorless, sequential,
two-way connections

send(), recv()

Datagram sockets

SOCK_DGRAM

Use UDP
Less reliable, more prone to
errors, faster, connectionless

sendto(), recvfrom()

https://beej.us/guide/bgnet/

AF_INET for communication using IPv4
protocols (AF = Address Family)

https://beej.us/guide/bgnet/

Blocking and non-blocking sockets

Non-blocking sockets provide a way to keep
sending and receiving packets without
needing to wait for the step to complete

To use them: see fcntl(), SOCK_NONBLOCK (only one is needed)

“Does the socket wait till the data has been sent/
received to return control to the program?”

https://www.scottklement.com/rpg/socktut/nonblocking.html

https://www.scottklement.com/rpg/socktut/nonblocking.html

Thank you
(and all the best)

