
Begin with an overview of xv6
Objective: To introduce the fundamental design choices and components of the xv6

kernel, highlighting its simplicity as an educational tool for understanding operating

systems.

It's designed to run on a multiprocessor system, meaning it can manage multiple

CPU cores that all share the same main memory

CPU / Core / HART (Hardware Thread): In the context of xv6, these terms are

used interchangeably. They all refer to a processing unit that can execute

instructions.

xv6 is a modern reimplementation of Unix Version 6 (v6), developed at MIT for

educational purposes. Its primary design goal is not performance or feature

richness, but clarity and pedagogical value.

Unlike production operating systems like Linux or BSD, whose codebases are

measured in millions of lines, the xv6 kernel is small enough to be understood

in its entirety within a single academic semester.

This deliberate simplicity makes it an unparalleled tool for learning the

fundamental principles of operating system engineering

Hardware World of Xv6

Main Memory (RAM):

       - Fixed at **128 MB**. Unlike a real OS that detects and adapts to 

available RAM, xv6 assumes this fixed amount. 

       - **Caching is ignored.** The kernel doesn't deal with complex L1/L2 

cache management, which simplifies the code significantly.

Devices:* xv6 interacts with a small set of emulated devices:

        - **Timer Interrupts:** Each core has its own timer to ensure processes 

can be preempted. 

        - **Disk Drive:** A single emulated disk for the file system.

Memory Management: Pages and Lists

![[Screenshot 2025-08-22 at 10.18.27 PM.png]] Physical Memory: - The kernel allocates

memory for itself from a free list—a simple linked list of available pages. When the

kernel needs memory, it takes a page off the list; when it's done, it puts it back.

There's no complex malloc  for the kernel. - Divided into 4 KB pages. A page is the

smallest unit of memory that the OS manages. - Virtual Memory: - Managed using three-

level page tables. A page table is like a map that translates the virtual addresses a

program uses into physical addresses in RAM. - Each process gets its own page table. -

The kernel has its own master page table that maps all of physical memory, which is

shared across all cores.

Source Code arrangement
A preliminary tour of the xv6 source code reveals a logical separation that mirrors

its conceptual architecture. The codebase is primarily divided into two main

directories: kernel/ , which contains all the privileged kernel code, and user/ ,



which contains the user-level programs, including the shell and standard Unix

utilities.

What is a kernal
The xv6 kernel is the core of the operating system. Think of it as the master control

program that has privileged access to all the computer's hardware. Its primary job is

to manage the computer's resources (CPU, memory, disk) and provide essential services

to user programs, creating a safe and efficient environment for them to run.

1. The Kernel as a Resource Manager

The central idea is that the kernel is the sole manager of the system's resources.

User programs can't directly access hardware or interfere with each other. They must

ask the kernel for permission and services.

Analogy: The kernel is like the manager of an apartment building. It decides

which tenant (process) gets which apartment (memory), controls access to shared

utilities like the laundry room (disk), and ensures tenants don't enter each

other's apartments.

Protection: This management is enforced by the CPU's hardware protection

mechanisms. The CPU can operate in two modes:

Kernel Mode: Privileged mode where all instructions are allowed. The

kernel runs in this mode.

User Mode: Restricted mode for user programs. Sensitive operations (like

accessing hardware) are forbidden.

2. Core Responsibilities of the xv6 Kernel

The kernel's job can be broken down into four main areas.

**Process Management:

This is about managing the execution of programs.

What is a process? A process is simply a program in execution. The kernel's job

is to create, schedule, and terminate these processes.

Multitasking: xv6 creates the illusion of running multiple programs

simultaneously by rapidly switching the CPU's attention between different

processes. This is called context switching.

How it works in xv6: The kernel maintains a process table to keep track of

every process's state (e.g., RUNNING , SLEEPING , ZOMBIE ). The scheduler

decides which process to run next.

*Memory Management: *

This is about allocating and protecting memory for the kernel and each process.



The Challenge: Every process needs its own memory space, and it must be

prevented from corrupting other processes or the kernel itself.

Virtual Memory: xv6 gives each process its own private virtual address space,

which is a clean, continuous view of memory starting from address 0.

How it works in xv6: The kernel uses the CPU's page tables to map these virtual

addresses to actual physical addresses in RAM. This mapping is unique for each

process, ensuring isolation.

**File System:

This is about organizing data on a persistent storage device, like a disk.

The Goal: Provide a structured way to store and retrieve information through

files and directories.

How it works in xv6: xv6 implements a simple, Unix-like file system using:

Inodes: Data structures that describe a file (its size, location on

disk, etc.), but not its name.

Data Blocks: The actual blocks on the disk that hold the file's content.

Directories: Special files that contain a list of names and their

corresponding inode numbers.

**System Calls:

This is the interface between user programs and the kernel.

The Bridge: A user program cannot directly call kernel functions. Instead, it

must make a system call to request a service. This is the only legitimate way

to cross the boundary from user mode to kernel mode.

How it works in xv6: A program executes a special instruction ( int ) that

triggers a trap. This trap forces the CPU to switch into kernel mode and jump

to a pre-defined kernel function (a trap handler), which then identifies and

executes the requested service.

Key xv6 System Calls:

fork() : Creates a new process.

exec() : Loads and runs a new program.

read()  / write() : Performs file input/output.

sbrk() : Requests more memory for a process.

exit() : Terminates the current process.

Putting It All Together: The Life of a Command

When you type ls  in the xv6 shell, this is what happens:



1. The shell (a user program) calls the fork()  system call to create a new child

process.

2. The kernel's process manager duplicates the shell process.

3. The new child process calls the exec("ls", ...)  system call.

4. The kernel's memory manager sets up a new address space and the file system

loads the ls  program from the disk into that memory.

5. The ls  program runs. It uses the open() , read() , and write()  system calls

to interact with the file system and display the directory contents on the

console.

6. While ls  waits for data from the disk, the kernel's scheduler may perform a

context switch to run another process.

7. Once finished, ls  calls the exit()  system call, and the kernel cleans up all

its resources (memory, open files, etc.).

spinlocks

Why do we need locks

We need locks to safely manage access to shared data in multi-threaded applications.

Without locks, multiple threads could try to read and write to the same memory

location simultaneously. This creates a race condition, where the final state of the

data is unpredictable and often incorrect, leading to data corruption and crashes.

A lock acts like a key to a room, ensuring only one thread can access the shared data

at a time. This principle is called mutual exclusion.

A thread "acquires" the lock, enters the "critical section" to modify the data, and

then "releases" the lock, allowing another waiting thread to take its turn.

Spinlocks are a specific type of lock where waiting threads repeatedly check in a

tight loop ("spin") until the lock becomes available. This is efficient for locks that

are held for extremely short durations, as it avoids the overhead of putting a thread

to sleep.

In essence, locks enforce order and guarantee that your program behaves predictably

and reliably. ![[Screenshot 2025-08-22 at 2.58.30 PM.png]] ![[Screenshot 2025-08-22 at

2.55.27 PM.png]]![[Screenshot 2025-08-22 at 2.59.46 PM.png]]

Spinlock Fundamentals

[00:07] Spinlocks are synchronization primitives used in operating systems to

protect shared data from concurrent access.

They are represented by a single word in memory, which can have two states:

0: The lock is free (unlocked or released).

1: The lock is held (acquired or locked).

http://www.youtube.com/watch?v=gQdflOUZQvA&t=7


[00:54] In the xv6 operating system, the spinlock structure contains three

fields:

locked : The current state of the lock (0 or 1).

name : A string for debugging purposes.

cpu : A pointer to the CPU core that currently holds the lock.

Core Spinlock Functions

[01:38] There are four key functions for managing spinlocks:

Initialize: Sets the lock's name, the cpu  field to null, and the

locked  value to 0.

Acquire: Attempts to obtain the lock.

Release: Releases the lock.

Holding: Checks if the current core holds the lock, used for error

checking.

The "Acquire" Function: Challenges and Solutions

[02:13] A simple implementation of the acquire  function that first checks if

the lock is free and then sets it to 1 is vulnerable to race conditions in a

multi-core environment [02:55].

[03:46] To address this, the RISC-V architecture provides the amo.swap  (atomic

memory operation swap) instruction. This instruction atomically swaps a value

in a register with a value in memory, preventing any other instruction from

interrupting the operation.

[04:28] The acquire  function uses a loop that repeatedly executes the

amo.swap  instruction, attempting to write a 1 to the lock's locked  field. The

loop continues until the value returned by amo.swap  is 0, indicating that the

lock was successfully acquired.

The "Release" Function

[05:12] The release  function is simpler than acquire . It sets the locked

field back to 0. While a standard store operation is often sufficient, xv6 uses

amo.swap  for this as well.

Code Walkthrough (spinlock.c)

init  function [05:40]: This function initializes the spinlock by setting the

name , setting the cpu  to null, and the locked  status to zero.

acquire  function [06:04]: This function uses __sync_lock_test_and_set  (which

compiles to amo.swap ) inside a while  loop. It also records which cpu  is

holding the lock [07:02], checks for any attempts to acquire the lock twice
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[07:26], and uses a __sync_synchronize  memory fence [07:46] to prevent the

compiler from reordering memory operations.

release  function [09:06]: This function checks to make sure the current core

is the one holding the lock, sets the cpu  field to null, and then uses

__sync_lock_release  to set the locked  field to zero. It also includes a

__sync_synchronize  [09:50].

holding  function [10:19]: This function checks to see if the lock is held and

if the current CPU is the one holding it.

Spinlock Usage Principles

[10:49] Spinlocks should be held for the shortest possible duration to avoid

wasting CPU cycles.

The thread holding the lock should not be put to sleep or be preempted.

[11:34] Spinlocks protect shared data by enforcing "constraints" on that data.

[11:46] The typical usage pattern is: acquire_lock  -> access_shared_data

(critical section) -> release_lock .

Deadlocks and Interrupts

[13:17] A deadlock can occur if a thread holding a spinlock is interrupted, and

the interrupt handler tries to acquire the same lock.

[14:43] To prevent this, interrupts are disabled before acquiring a spinlock

and re-enabled after releasing it. This ensures that the critical section is

executed without interruption.

Handling Nested Calls and Interrupt Status

[15:43] Simply disabling and enabling interrupts is not sufficient for nested

acquire / release  calls or when interrupts are already disabled.

[16:41] A counter, n_off , is used to track nested calls.

[17:39] A variable, int_ena , stores the interrupt status before the first

acquire  call.

push_off  and pop_off  Functions

[18:05] These functions are used to manage the interrupt status during nested

acquire  and release  calls:

push_off  (called by acquire ): Disables interrupts. If it is the first

call ( n_off  is zero), it saves the current interrupt status in int_ena

and then increments n_off .

pop_off  (called by release ): Decrements n_off . If n_off  becomes zero

and int_ena  was true, it re-enables interrupts.
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Why do we need locks

We need locks to safely manage access to shared data in multi-threaded

applications.

Without locks, multiple threads could try to read and write to the same memory

location simultaneously. This creates a race condition, where the final state of the

data is unpredictable and often incorrect, leading to data corruption and crashes. �

A lock acts like a key to a room, ensuring only one thread can access the shared data

at a time. This principle is called mutual exclusion.

A thread "acquires" the lock, enters the "critical section" to modify the data, and

then "releases" the lock, allowing another waiting thread to take its turn.

Spinlocks are a specific type of lock where waiting threads repeatedly check in a

tight loop ("spin") until the lock becomes available. This is efficient for locks that

are held for extremely short durations, as it avoids the overhead of putting a thread

to sleep.

In essence, locks enforce order and guarantee that your program behaves predictably

and reliably.

Trap and context switching

Trap Handling Fundamentals

[00:20] The video discusses traps, which are events that interrupt the normal

flow of program execution. There are two main types:

Exceptions: Synchronous events caused by the instruction stream, such as

system calls or illegal instructions.

Interrupts: Asynchronous events from external devices, like a timer or a

network card.

![[Screenshot 2025-08-21 at 11.36.09 PM.png]]![[Screenshot 2025-08-21 at

11.36.09 PM.png]]![[Screenshot 2025-08-21 at 11.37.38 PM.png]]!
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Supervisor Mode Traps

[01:03] The stvec  (Supervisor Trap Vector Base Address) register holds the

memory address of the trap handler code.

[01:22] In xv6, there are two primary trap handlers: kernelvec  for traps

occurring in supervisor mode and uservac  for traps from user mode.

[01:43] The sstatus  (Supervisor Status) register contains crucial bits for

trap handling:

sie : Supervisor Interrupt Enable.

spie : Previous Supervisor Interrupt Enable (saves the value of sie

during a trap).

http://www.youtube.com/watch?v=hSjJ94PoLXc&t=20
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A bit to record the previous execution mode (user or supervisor).

Trap Process: [04:22] When a trap occurs, the hardware automatically performs

several steps:

1. [04:36] Saves the current program counter (PC) in the sepc  (Supervisor

Exception Program Counter) register.

2. [04:46] Jumps to the trap handler by loading the address from stvec

into the PC.

3. [04:56] Records the cause of the trap in the scause  register.

4. [05:34] Saves the previous mode and interrupt status in sstatus .

5. [05:51] Switches to supervisor mode and disables interrupts.

Returning from a Trap: [06:20] The sret  (supervisor return) instruction is

used to exit the trap handler, which restores the PC, mode, and interrupt

status.

What sret  Does

1. Privilege Level Transition

# Before sret: CPU in supervisor mode (kernel mode) 

sret 

# After sret: CPU in user mode

sret  switches from supervisor mode back to user mode, restoring the privilege level

that was active before the trap occurred.

2. Program Counter Restoration

# sret jumps to the address stored in sepc register 

# sepc was set by usertrapret() before calling userret

The CPU jumps to whatever address is stored in the sepc  (Supervisor Exception

Program Counter) register, which contains the user program address where execution

should resume.

3. Interrupt/Exception Status Restoration

# sret restores interrupt enable state from sstatus register 

# sstatus.SPIE bit → sstatus.SIE bit 

# This re-enables interrupts in user mode if they were enabled before

Context Before sret

Just before sret  executes, the system state is:

CPU State:

http://www.youtube.com/watch?v=hSjJ94PoLXc&t=262
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Mode: Supervisor (kernel) mode

Page table: User page table (switched back by csrw satp, a0 )

Stack: Still using kernel stack

Registers: All user registers restored from trapframe

Key Registers:

sepc : Contains user program counter (set by usertrapret() )

sstatus : Contains user mode status (set by usertrapret() )

satp : Contains user page table (already switched)

What Happens During sret

Hardware Actions:

1. Set privilege mode to user (clear supervisor bit)

2. Jump to address in sepc  (resume user program)

3. Restore interrupt state from sstatus.SPIE  → sstatus.SIE

4. Update status registers appropriately

Before and After sret :

BEFORE sret: 

├── Mode: Supervisor (kernel) 

├── PC: userret function   

├── Registers: User values restored from trapframe 

├── Stack: Kernel stack 

├── Page table: User page table 

└── sepc: User program counter to resume 

 

AFTER sret: 

├── Mode: User   

├── PC: Value from sepc (user program) 

├── Registers: User values (unchanged) 

├── Stack: User stack (sp restored from trapframe) 

├── Page table: User page table (unchanged)   

└── sepc: Unchanged

Complete User Return Flow

The full sequence in userret :

userret: 

    # 1. Switch to user page table 

    csrw satp, a0                  # Load user page table 

    sfence.vma zero, zero          # Flush TLB 

 

    # 2. Restore all user registers from trapframe 

    li a0, TRAPFRAME 

    ld ra, 40(a0)                  # Restore user return address 

    ld sp, 48(a0)                  # Restore user stack pointer 

    # ... restore all other registers ... 

    ld a0, 112(a0)                 # Restore a0 last 



 

    # 3. Return to user mode and user program 

    sret                           # ← THE MAGIC HAPPENS HERE!

What usertrapret()  Set Up Before Calling userret :

void usertrapret(void) { 

    // ... 

 

    // Set up for sret instruction: 

    w_sstatus(sstatus_bits);       // Configure user mode, interrupts 

    w_sepc(p->trapframe->epc);     // Where user program should resume 

 

    // Call assembly code that ends with sret 

    uint64 trampoline_userret = TRAMPOLINE + (userret - trampoline); 

    ((void (*)(uint64))trampoline_userret)(satp); 

}

Why sret  is Special

1. Atomic Transition

Cannot be interrupted during the mode switch

Hardware guarantees the transition completes safely

2. Privilege-Protected

Only available in supervisor mode

User programs cannot execute sret

3. Complete State Restoration

Restores execution exactly where the user program left off

Maintains user program illusion that nothing happened

Example: System Call Return

// User program makes system call

int fd = open("file.txt", O_RDONLY); 

//                         ↑ 

//                    User program paused here by ecall 

 

// After kernel processes system call:

// 1. usertrap() handles the system call

// 2. usertrapret() prepares for return  

// 3. userret restores user state

// 4. sret jumps back to user program 

 

printf("fd = %d\n", fd);  // ← User program resumes HERE

//                           sret jumped to this instruction

Summary



sret  performs the final step in returning from kernel to user mode:

1. Switches CPU from supervisor → user mode

2. Jumps to user program address (stored in sepc )

3. Restores user interrupt state

4. Completes the kernel → user transition atomically

It's the exit ramp from kernel mode back to user space, restoring the user program's

execution exactly where it was interrupted by the trap!

Context Switching

![[Screenshot 2025-08-21 at 11.55.33 PM.png]] ![[Screenshot 2025-08-21 at 11.57.56

PM.png]]

User and Kernel Modes

[00:34] Code execution happens in two modes: user mode for applications and

kernel mode for the operating system.

[00:53] A trap is the mechanism that switches the CPU from user mode to kernel

mode.

[01:01] Traps can be triggered by:

Interrupts: An external device, like a timer, needs attention.

System Calls: The user program intentionally requests a service from the

kernel.

Exceptions: The user program performs an illegal operation, like

dividing by zero.

[0.01:24] The sret  (system return) instruction is used to switch from kernel

mode back to user mode.

[01:50] During a trap, the state of the user thread (its registers) is saved.

During an sret , this state is restored, allowing the thread to resume exactly

where it left off.

Time Slices and Scheduling

[02:15] A user thread runs for a period of time called a time slice.

[02:22] A timer interrupt signals the end of a time slice, causing a trap into

the kernel.

[02:52] The kernel's scheduler then decides which thread gets to run next. A

system return ( sret ) starts a time slice for a chosen thread, and a trap ends

it.

Trap Handling Process

1. [05:11] When a trap occurs, the user thread's registers and program counter are

saved.
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2. [05:33] The kernel identifies the cause of the trap (interrupt, system call,

etc.) and runs the appropriate handler code.

3. [05:18] After handling the trap, the kernel restores the user registers and

executes sret  to return to user code.

Multi-Core Systems

[06:10] On a multi-core system, different cores can run different threads

simultaneously.

[08:26] A process's state (its saved registers) is stored in shared memory,

allowing it to be paused on one core and resumed on another.

[08:49] Locks are crucial to protect this shared memory from being accessed by

multiple cores at the same time, which would cause a race condition.

Context Switching Mechanisms

[11:26] A context switch isn't just a simple trap and return. It often involves

switching from the context of a user process's kernel thread to a separate

scheduler thread, and then to the kernel thread of the next process to run.

[12:45] The assembly function swtch  is used for these kernel-to-kernel context

switches. It saves and restores only the registers that the kernel threads

themselves use, which is a smaller set than the full user register state saved

during a trap.

Trap Handling

Trap Handling Overview

[00:00] The following section the complete lifecycle of a trap in the xv6

operating system, from the moment it occurs in user mode to the final return.

[00:42] Traps are caused by either asynchronous interrupts (like the timer or

I/O devices) or synchronous exceptions (like system calls or program errors).

Key Data Structures

Trap Frame [08:09]: A structure that holds all the saved state of a user

process during a trap, including its registers, program counter, and kernel-

related pointers.

CPU Structure [09:35]: An array (one entry per CPU core) that keeps track of

the currently running process on that core.

Proc Structure [12:01]: The "Process Control Block". This large structure

contains all the essential information about a single process, such as its

state (running, sleeping, etc.), process ID, memory space, open files, and a

pointer to its trap frame.
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The Trap Handling Process

1. Hardware Actions [00:57]: When a trap occurs, the CPU hardware automatically:

Disables interrupts.

Switches from user mode to supervisor mode.

Saves the user's program counter (PC) and the cause of the trap.

Jumps to the trap handler function, usertvec .

2. The Trampoline Page [01:40]: Before the main kernel C code is executed, a

special "trampoline" page is used. This page contains assembly code that saves

all the user's general-purpose registers into a data structure called a trap

frame.

3. Kernel Entry ( usertrap ) [02:12]: After the user state is saved, the code

switches to the kernel's virtual address space and jumps to the C function

usertrap .

4. usertrap  Logic [03:05]: This C function is the main hub for trap handling. It

examines the cause of the trap and decides what to do:

System Call: Executes the requested system call.

Device Interrupt: Calls the appropriate device driver.

Timer Interrupt: Yields the CPU to the scheduler, allowing another

process to run.

Program Exception: If the process caused an error or was marked as

"killed", the kernel terminates it.

5. Returning to User Mode ( usertrapret ) [05:43]: When the kernel has finished

handling the trap, the usertrapret  function begins the process of returning to

user mode. It prepares the necessary information in the trap frame for the

final return.

6. User Return Assembly [06:43]: The execution jumps back to the trampoline page,

which runs assembly code to:

Switch back to the user's address space.

Restore all the user's registers from the trap frame.

Execute the sret  instruction to switch the CPU back to user mode and

re-enable interrupts, resuming the user program.
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Scheduling
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Scheduling and Context Switching in xv6

This video provides a deep dive into the scheduling mechanism of the xv6 operating

system. It explains how the kernel switches between different processes to create the

illusion of simultaneous execution. The core components discussed are the yield ,

sched , and scheduler  functions, and the swtch.S  assembly code.

Helper Functions

Before diving into the main scheduling logic, the video introduces a few essential

helper functions that identify the current execution context:

cpuid : Returns the ID of the CPU core the code is currently running on.

mycpu : Retrieves the cpu  structure for the current core, which holds core-

specific information.

myproc : Gets a pointer to the proc  structure of the process currently running

on that core.

The Scheduling Flow: From Trap to Switch

The entire process of switching from a user process to the scheduler is a carefully

choreographed sequence:

1. A Trap Occurs: A timer interrupt fires, causing a trap into the kernel. From

this point until the user process is resumed, interrupts remain disabled to

prevent race conditions.

2. yield()  is Called: The trap handler eventually calls the yield()  function.

3. sched()  Prepares the Switch:

yield()  calls sched() , which acts as a staging area for the context

switch.

It acquires a lock on the current process's proc  structure.

It changes the process's state from RUNNING  to RUNNABLE , indicating

it's ready to run but not currently on a CPU.

Crucially, it then calls swtch() .

The scheduler()  Function: The Heart of Scheduling

The scheduler()  function runs as a dedicated kernel thread on each CPU core, and its

job is simple: find and run a process.



Infinite Loop: It runs in an infinite loop, constantly scanning the process

table for a process with the state RUNNABLE .

Finding a Process: When it finds a runnable process:

1. It acquires a lock on that process.

2. It changes the process's state to RUNNING .

3. It updates the current CPU's state to point to this new process.

4. It calls swtch()  to switch the context to the new process's kernel

thread.

No Runnable Processes: If no processes are ready to run, the scheduler

temporarily re-enables interrupts. This is a critical step to prevent deadlock,

as it allows device interrupts to come in and potentially wake up a sleeping

process, making it runnable.

swtch.S : The Assembly Magic

The swtch  function is where the low-level context switch actually happens. It's

written in assembly language because it needs to directly manipulate CPU registers.

Two Contexts: It takes two arguments: a pointer to the "old" context to save

and a pointer to the "new" context to load.

Save and Restore:

It saves the callee-saved registers (like the stack pointer and return

address) of the current thread into its context  structure.

It restores the registers from the new thread's context  structure.

The "Return": The magic of swtch  is that when it "returns," it doesn't return

to where it was called. Instead, it returns to the instruction that the new

thread was about to execute, effectively completing the context switch.

This switch happens in two key places:

1. From a process's kernel thread ( sched ) to the scheduler  thread.

2. From the scheduler  thread to a new process's kernel thread.

Code walkthrough

Timer Interrupt During User Mode Execution

Let's say we have this user program running:

// Process A running in user mode

int main() { 

    int sum = 0; 



    for (int i = 0; i < 1000000; i++) { 

        sum += i;  // ← TIMER INTERRUPT HAPPENS HERE 

    } 

    return 0; 

}

Complete Flow: Timer Interrupt → Process Switch

Step 1: Timer Interrupt Occurs

User Process A → Timer Hardware → RISC-V Hardware Actions: 

1. Save current PC in sepc register (points to "sum += i" instruction) 

2. Switch to supervisor mode 

3. Jump to uservec (address in stvec register)

Step 2: Save Process A's Context ( uservec  in trampoline.S)

uservec: 

    # Save ALL of Process A's registers in its trapframe 

    li a0, TRAPFRAME 

    sd ra, 40(a0)       # Save Process A's return address 

    sd sp, 48(a0)       # Save Process A's stack pointer 

    sd t0, 72(a0)       # Save Process A's temporary registers 

    # ... save all 32 registers of Process A ... 

 

    # Switch to Process A's kernel stack and page table 

    ld sp, 8(a0)        # Load Process A's kernel stack 

    ld t1, 0(a0)        # Load kernel page table 

    csrw satp, t1       # Switch to kernel page table 

 

    # Jump to C trap handler 

    jr t0               # Jump to usertrap()

Step 3: Handle Timer in usertrap()

uint64 usertrap(void) { 

    struct proc *p = myproc();  // p = Process A 

 

    // Save the interrupted PC (where Process A was interrupted) 

    p->trapframe->epc = r_sepc();  // Save "sum += i" instruction address 

 

    // Determine interrupt type 

    int which_dev = devintr(); 

 

    if(which_dev == 2) {  // Timer interrupt 

        yield();          // ← KEY: This switches to scheduler! 

    } 

 

    // If we get here, Process A was rescheduled and resumed 

    prepare_return();     // Prepare to return to Process A 

}



Step 4: yield()  Switches to Scheduler

void yield(void) { 

    struct proc *p = myproc();  // p = Process A 

    acquire(&p->lock); 

 

    p->state = RUNNABLE;        // Mark Process A as runnable (not running) 

    sched();                    // ← Switch to scheduler 

 

    // When Process A is rescheduled later, execution resumes HERE 

    release(&p->lock); 

}

Step 5: sched()  Context Switch

void sched(void) { 

    struct proc *p = myproc();  // p = Process A 

 

    // Save Process A's kernel context (registers, stack pointer) 

    swtch(&p->context, &mycpu()->context);  // ← Context switch happens here 

 

    // When Process A is rescheduled, it will resume HERE 

}

Step 6: swtch()  Assembly Magic

# swtch(&p->context, &mycpu()->context) 

# a0 = &Process A's context, a1 = &scheduler context 

 

swtch: 

    # Save Process A's kernel registers in p->context 

    sd ra, 0(a0)        # Save Process A's kernel return address 

    sd sp, 8(a0)        # Save Process A's kernel stack pointer 

    sd s0, 16(a0)       # Save Process A's saved registers 

    # ... save all callee-saved registers of Process A ... 

 

    # Load scheduler's registers from mycpu()->context   

    ld ra, 0(a1)        # Load scheduler's return address 

    ld sp, 8(a1)        # Load scheduler's stack pointer 

    ld s0, 16(a1)       # Load scheduler's saved registers 

    # ... load all scheduler registers ... 

 

    ret                 # Return to scheduler (ra points to scheduler code)

Step 7: Scheduler Runs

void scheduler(void) { 

    struct cpu *c = mycpu(); 

    c->proc = 0;  // No process running 

 



    for(;;) { 

        // Look for a RUNNABLE process 

        for(p = proc; p < &proc[NPROC]; p++) { 

            acquire(&p->lock); 

            if(p->state == RUNNABLE) {  // Found Process B (or A later) 

                p->state = RUNNING; 

                c->proc = p; 

 

                // Switch to Process B 

                swtch(&c->context, &p->context);  // ← Switch to Process B 

 

                c->proc = 0; 

            } 

            release(&p->lock); 

        } 

    } 

}

Step 8: Resume Different Process (Process B)

When scheduler finds Process B and calls swtch(&c->context, &p->context) :

swtch: 

    # Save scheduler registers in c->context 

    # Load Process B's registers from p->context 

 

    ret  # Return to where Process B was interrupted (could be yield, sleep, etc.)

Key Points About Context Switching

1. Two Levels of Context

User Context: Saved in trapframe (user registers, user PC, user stack)

Kernel Context: Saved in proc->context (kernel registers, kernel stack)

2. Process A's Complete State After Timer

struct proc *processA = ...; 

 

// User context (saved in trapframe) 

processA->trapframe->epc = 0x1000;  // Address of "sum += i" 

processA->trapframe->sp = 0x2000;   // User stack pointer 

processA->trapframe->a0 = 5;        // User register values

// ... all 32 user registers saved ... 

 

// Kernel context (saved in context) 

processA->context.ra = yield+offset;  // Where to resume in yield() 

processA->context.sp = 0x3000;       // Kernel stack pointer

// ... callee-saved kernel registers ... 

 

processA->state = RUNNABLE;          // Ready to run again



3. When Process A Runs Again

Later, when the scheduler picks Process A again:

1. Scheduler calls swtch()  → Resume in yield()

2. yield()  returns → Resume in sched()

3. sched()  returns → Resume in usertrap()

4. usertrap()  calls prepare_return()  → Return to user space

5. userret  in trampoline → Restore user registers from trapframe

6. sret  instruction → Return to "sum += i" instruction

7. Process A continues exactly where it was interrupted

Summary

When a timer interrupt causes a process switch:

1. User context saved in trapframe (where user program was)

2. Kernel context saved in proc->context (where kernel was)

3. Scheduler runs and picks a different process

4. New process resumes from where it was last interrupted

5. Original process waits in RUNNABLE state until rescheduled

The magic is that both user and kernel execution contexts are preserved, allowing

processes to be interrupted and resumed seamlessly at any point in their execution!

Locking and Multi-Core Safety

The video emphasizes the importance of locks throughout this process. Locks on the

proc structures ensure that a process's state isn't corrupted if another CPU core

tries to interact with it during a context switch. A key point is that a lock can be

acquired on one core (before a swtch) and released on a completely different core

(after that process is scheduled again).

System calls
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The User/Kernel Divide

The kernel operates with full hardware privileges, enabling it to manage memory,

control I/O devices, and orchestrate program execution. User processes, by contrast,

are confined to their own memory space and are forbidden from performing privileged

operations directly. This raises a critical question: How can a user program, such as

the shell, perform a task like opening a file when it lacks the necessary privileges?

The answer lies in a controlled transition known as a system call, which is a type of

trap.

Page tables and virtual addresses if time

Address Translation and the SATP Register

![[Screenshot 2025-08-22 at 12.03.59 AM.png]]



[00:01] This video explains address translation and the page table architecture

in the RISC-V processor, using the xv6 kernel as an example.

[00:26] The SATP (Supervisor Address Translation and Protection) register is a

key component. It stores the physical memory address of the root of the current

page table.

[01:12] Virtual address translation is always active in supervisor and user

modes but is turned off in machine mode.

Page Tables in RISC-V

Kernel Page Table: [01:29] The xv6 kernel maintains a single, shared page table

that maps the kernel's virtual addresses directly to physical addresses. This

allows the kernel to have a simple, one-to-one mapping for all of physical

memory, including memory-mapped I/O devices [01:53].

User Mode Page Tables: [02:00] Each user-level process has its own separate

page table, providing isolation and protection.

sv39 Paging Scheme: [02:09] RISC-V supports several paging schemes (sv32, sv39,

sv48). xv6 uses sv39, which is a three-level page table architecture for 64-bit

processors.

Translation Lookaside Buffers (TLBs)

[03:17] To speed up address translation, processors use a TLB (Translation

Lookaside Buffer), which is a cache for recently used page table entries.

[03:44] When the page table is changed (i.e., when the SATP register is

updated), the TLB must be flushed to ensure that the processor uses the new

translations. This is done with the sfence.vma  instruction.

Virtual Addresses in sv39

[04:19] An sv39 virtual address is 39 bits long.

[04:30] It is divided into two parts:

A 12-bit offset, which is used to select a byte within a 4KB page.

A 27-bit index, which is further divided into three 9-bit fields, one

for each level of the page table.

Page Table Entry (PTE)

[05:03] Each entry in a page table is called a Page Table Entry (PTE).

A PTE contains several important bits:

Permission bits: Control whether the page can be read, written, or

executed.
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U-bit: Determines if the page is accessible from user mode.

V-bit: Indicates whether the PTE is valid.

Physical Page Number (PPN): [05:41] The physical address of the page in

memory.

Page Table Structure

[06:21] The SATP register points to the root of a three-level tree structure.

[06:30] Each node in this tree is a 4KB page in physical memory.

[06:54] Each interior node of the page table contains 512 entries, with each

entry being 64 bits in size.

[07:32] The hardware uses the three 9-bit index fields from the virtual address

to traverse this tree and find the correct PTE.

[05:51] The physical page number from the PTE is then combined with the 12-bit

offset from the virtual address to form the final 56-bit physical address.
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