
Karthik Vaidhyanathan

CS3.301 Operating Systems
and Networks
Process Virtualisation - Mechanisms and Policies (Part 1)

https://karthikvaidhyanathan.com

1

https://karthikvaidhyanathan.com

Acknowledgement

The materials used in this presentation have been gathered/adapted/generate from various
sources as well as based on my own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
• OSTEP Educator Materials, Remzi et al.
• OSTEP Book by Remzi et al.
• Modern Operating Systems, Tanenbaum et al.
• Other online sources which are duly cited

2

Lets draw some Parallels

3

• As a visitor/user in the library - check sections, read books, magazines,..

• What about accessing the reference section and get access to some
treasured books?

Lets draw some Parallels

4

Lets draw some Parallels

5

Lets draw some Parallels

6

Restricted Operations

• Bring hardware into the picture

• Introduce a new processor mode

• User mode

• Code is restricted in what it can do

• Eg: no I/O request, Processor will raise an exception

• Kernel mode

• Code can do whatever it likes to do

• All privileged operations can be executed

7

Any challenges that you can think of?

Limited Direct Execution (LDE)

• Low level mechanism that separates the user space from kernel space

• Let the program directly run on the CPU

• Limits what process can do

• Offer privileged operations through well defined channels with the help of OS

At the end we need OS to be more than just a library!

8

How to move from User to Kernel?

• System calls - Kernel performs on behalf of user process

• Key pieces of functionality exposed by the kernel

• File system, process management, process communication, memory
allocation, etc

• Most OS provides few 100s of calls

• Early unix - 20 calls

• Some privileged hardware instruction support is needed - Cannot use normal
function call mechanism

9

System call works little differently

• Kernel does not trust the user stack - You don’t want to jump to random addresses

• Maintains a separate kernel stack (kernel mode)

• Kernel cannot rely on user provided address

• Uses a table - Interrupt Descriptor table (boot time) - Guidelines in our example

• IDT consists of addresses of different kernel functions to run on system calls or
other events

10

TRAP Instruction

• Special kind of instruction to switch mode from user to kernel

• Allows system to perform what it wants

• When a system call is made, the trap instruction allows to jump into kernel

• Raise the privilege mode to kernel mode

• Return-from-trap instruction allows switch back to user mode

• Return into the calling user program

• Normal routine is interrupted

11

More about TRAP instruction

• During TRAP instruction execution

• CPU to higher privilege level

• Switch to Kernel Stack

• Save context (old PC, registers) on Kernel Stack

• Look up in IDT (Trap Table) and jump to trap handler function in OS code

• Once in Kernel, privileged instructions can be performed

• Once done, OS calls a special return-from-trap instruction

• Returns into calling program, with back to User mode

12

The dual modes
User Mode and Kernel Mode

13Adapted from: OS02-Limited Direct Execution, Dongkun Shin, SKKU

The Dual Modes

14 Adapted from: OS02-Limited Direct Execution, Dongkun Shin, SKKU

• Interrupt

• Signal sent to the CPU due to unexpected event

• I/O Interrupt, clock Interrupt, Console Interrupt

• From either Software or Hardware interrupt

• Hardware may trigger an interrupt by signalling to the CPU

• Trap

• Software generated interrupt caused by

• Exception: Error from running program (divide by Zero)

• System call: Invoked by user program

Interrupt and Trap

15

LDE Protocol

16

OS @ boot (Kernel mode) Hardware

Initialize trap table
Remember address of..

Syscall handler..

OS @ run (Kernel mode) Hardware Program (User mode)
Create entry for process list

Allocate memory for program

Load program into memory

Setup user stack with arg

Fill kernel stack with reg/PC

return-from-trap Restore regs from kernel stack

Move to user mode

Jump to main

Run main()

..

System call

trap into OS

LDE Protocol

17

OS @ boot (Kernel mode) Hardware Program (User mode)

….

Save regs to kernel stack

Move to kernel mode

Jump to trap handler

Handle trap

Execute the system call

Return-from-trap

Restore regs from kernel stack

Move to user mode

Jump to PC after trap

…

Return from main()

trap (via exit())

Free memory of process

Remove process from process list

Problem 2: How to Switch between Process?
Lets draw some parallels

How can this situation be handled? - What can be the possibilities?

18

Cooperative Approach
Non-Preemptive
• Wait for system calls

• OS trusts the processes to behave reasonably (Give control back - Yield() call)

• Process transfer the control to the CPU by making a system call

• There can be misbehaving process (They may try to do something they shouldn’t)

• Divide by zero or attempting to access memory it shouldn’t

• Trap to OS -> OS will terminate the process

• Used in initial versions of Mac OS, Old Xerox alto system

• What if there is an infinite loop & process never terminates? - Reboot

19

Non-Cooperative Approach
Preemptive
• OS takes control

• The only way in cooperative approach to take control is reboot

• Without Hardware support, OS can’t do much!

• How can OS gain control?

20

• Simple solution - Use interrupts

• Timer interrupt was invented many years ago

• Every X milliseconds, raise an interrupt -> halt the process -> invoke interrupt
handler -> OS regains control

Non-Cooperative Approach
Preemptive - Timer Interrupt

• During boot sequence, OS starts the timer

• The time raises an interrupt every “X” milliseconds

• The timer interrupt gives OS the ability to run again on CPU

• Two decisions are possible - Component called Scheduler comes into picture

• Continue with current process after handling interrupt

• Switch to a different process => OS executes Context Switch

21

Context Switch

• A low-level piece of assembly code

• Save a few register values from executing
process registers to kernel stack

• General purpose registers

• Program counter

• Kernel stack pointer

• Restore values for the next process

• essentially return-from-trap will go to new

process

• Switch to Kernel stack for the next process
22

23

OS @ boot (Kernel mode) Hardware

Initialise trap table Remember address of..

Syscall handler..

Timer handler

Start interrupt timer Start timer

Interrupt CPU every “X” milliseconds

OS @ run (Kernel mode) Hardware Program (User mode)
Process A

….
Timer interrupt

Save regs(A) to k-stack(A)

Move to kernel mode

Jump to trap handler

LDE Protocol (Timer Interrupt)

24

LDE Protocol (Timer Interrupt)
OS @ boot (Kernel mode) Hardware Program (User mode)

Handle the trap

Call switch() routine

Save regs(A) to proc-struct(A)

Restore regs(B) from proc-struct(B)

Switch to k-stack(B)

Return-from-trap (into B)

…..

Restore regs(B) from k-stack(B)

Move to user mode

Jump to B’s PC

Process B

…

What if?

• During handling of one interrupt another interrupt occurs?

• Disable interrupt during interrupt processing

• Sophisticated locking mechanism to protect concurrent access to internal
data structures

25

How to decide which process to run next?

Need for Policies (Scheduling)
Which process to schedule next on context switch?

26

Scheduler

Scheduling in the Library Scenario
What we need to know to ensure good policy?

• How many users want to go to the reference section?

• What’s the purpose? - What type of book they want to read?

• How much time are they expected to be in the reference section?

• How frequently are new users coming in?

Essentially it would be good to have these estimates to make a good policy!

27

What does it mean Concretely?

• For scheduling we need an idea of workload

• Assumptions about processes running in the system

• Number of processes

• RAM required

• CPU utilisation

• Any Input/Output, if yes what kind?

• ….

28

Lets start with some workload assumptions

Each process that is ready/needs to be executed and those executing - Job!

Some Assumptions:

1. Each job runs for same amount of time

2. All jobs arrive at the same time

3. All jobs only use the CPU (No I/O)

4. The run time or execution time of each job is known

29

How good is the policy?
Some Key Scheduling Metrics

• Metric is something we used to measure

• Performance metric: Turnaround time

• Time difference between job completion time and the arrival time

• Another metric is fairness - Jains fairness index: How fair is the scheduling?

• May not go hand in hand with performance

Tturnaround = Tcompletion − Tarrival

30

Scenario 1
All Assumptions in tact

• Imagine three jobs - Whatsapp, Skype and Teams update arriving at same
time

• Each of them take same time to complete

31

Process Arrival Time to Complete

Whatsapp (w) ~0 20

Skype (S) ~0 20

Teams (T) ~0 20

How to go about this?

First Come First Serve Policy

• The most basic algorithm a scheduler can implement

• Whoever comes first, give them the access

• Assume that they arrive at the same time - At time = 0

• For sake of simplicity W just arrived before T which just arrived before S

32

First Come First Serve (FCFS) Policy

33

Avg(Tturnaround) =
20 + 40 + 60

3
= 40

• Policy: Schedule the job came first

• As soon as it is done, schedule the
job that came next, continue

• There is an assumption here that
each job runs for the same time

• What if that’s not the case?

• Let us relax this assumption

What if each job no longer runs for same time?
Relaxing assumption 2

34

Avg(Tturnaround) =
100 + 120 + 140

3

= 120

FCFS is not that great
Convoy Effect

35

• Waiting time can go very high

• Convoy effect!

• Think about waiting in single line in grocery store where
you just have one item to purchase

What if?

• Every one said that they will need this much time for accessing the reference
section

• Librarian schedules based on the time they say
36

Shortest Job First (SJF) Policy

• Idea originating from operations research

• Policy: Run the shortest job first

37

Process Arrival Time to Complete

W 0 100

S 0 20

T 0 20

How to go about this?

Shortest Job First (SJF) Policy

38

• Assume that all jobs came at the same time

• Clearly whatsapp takes most amount of time

Avg(Tturnaround) =
20 + 40 + 140

3

= 66.3

Is that a bit too unrealistic? - In reality jobs can arrive at any time

Shortest Job First (SJF) Policy

39

• Whatsapp job arrives first

• Teams and Skype jobs arrives
around t = 20

Avg(Tturnaround) =
100 + 100 + 120

3

= 106.6

Even worst!! How to improve?

Shortest Time to Completion First (STCF)

• Adding preemption to Shortest Job First (SJF) Policy

• More like preemptive SJF

• Policy: Any time a new job enters the system,

• Check how much time is remaining for existing jobs

• Check the time that is required for the new one

• Execute the one that shall complete first

40

Shortest Time to Completion First (STCF)

41

Avg(Tturnaround) =
(140 − 0) + (40 − 20) + (60 − 20)

3
= 66.3

Can we improve this a bit more?

• What about the user side?

• What if this is an interactive process?

• Think about going to Amazon or Working with some desktop application

• Imagine a user sitting in front of the machine and executing the
command

• The machine identifies the nature of the job and schedules it

• What about response time?

42

Tresponse = Tfirstrun − Tarrival

43

Thank you

Course site: karthikv1392.github.io/cs3301_osn
Email: karthik.vaidhyanathan@iiit.ac.in

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

