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Lets draw some Parallels
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• As a visitor/user in the library - check sections, read books, magazines,..


• What about accessing the reference section and get access to some 
treasured books?



Lets draw some Parallels
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Restricted Operations

• Bring hardware into the picture


• Introduce a new processor mode


• User mode 

• Code is restricted in what it can do


• Eg: no I/O request, Processor will raise an exception


• Kernel mode 

• Code can do whatever it likes to do


• All privileged operations can be executed
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Any challenges that you can think of?



Limited Direct Execution (LDE)

• Low level mechanism that separates the user space from kernel space


• Let the program directly run on the CPU


• Limits what process can do


• Offer privileged operations through well defined channels with the help of OS


At the end we need OS to be more than just a library!
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How to move from User to Kernel?

• System calls - Kernel performs on behalf of user process 


• Key pieces of functionality exposed by the kernel


• File system, process management, process communication, memory 
allocation, etc


• Most OS provides few 100s of calls


• Early unix - 20 calls


• Some privileged hardware instruction support is needed - Cannot use normal 
function call mechanism
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System call works little differently

• Kernel does not trust the user stack - You don’t want to jump to random addresses


• Maintains a separate kernel stack (kernel mode)


• Kernel cannot rely on user provided address


• Uses a table - Interrupt Descriptor table (boot time) - Guidelines in our example


• IDT consists of addresses of different kernel functions to run on system calls or 
other events
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TRAP Instruction

• Special kind of instruction to switch mode from user to kernel 


• Allows system to perform what it wants 


• When a system call is made, the trap instruction allows to jump into kernel


• Raise the privilege mode to kernel mode


• Return-from-trap instruction allows switch back to user mode


• Return into the calling user program


• Normal routine is interrupted 
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More about TRAP instruction

• During TRAP instruction execution


• CPU to higher privilege level


• Switch to Kernel Stack


• Save context (old PC, registers) on Kernel Stack


• Look up in IDT (Trap Table) and jump to trap handler function in OS code 


• Once in Kernel, privileged instructions can be performed 


• Once done, OS calls a special return-from-trap instruction


• Returns into calling program, with back to User mode
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The dual modes
User Mode and Kernel Mode

13Adapted from: OS02-Limited Direct Execution, Dongkun Shin, SKKU 



The Dual Modes
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• Interrupt 

• Signal sent to the CPU due to unexpected event


• I/O Interrupt, clock Interrupt, Console Interrupt


• From either Software or Hardware interrupt


• Hardware may trigger an interrupt by signalling to the CPU


• Trap 

• Software generated interrupt caused by


• Exception: Error from running program (divide by Zero)


• System call: Invoked by user program 

Interrupt and Trap
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LDE Protocol
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OS @ boot (Kernel mode) Hardware

Initialize trap table
Remember address of..


Syscall handler.. 

OS @ run (Kernel mode) Hardware Program (User mode)
Create entry for process list


Allocate memory for program

Load program into memory

Setup user stack with arg


Fill kernel stack with reg/PC

return-from-trap Restore regs from kernel stack


Move to user mode

Jump to main

Run main()

..


System call 

trap into OS



LDE Protocol
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OS @ boot (Kernel mode) Hardware Program (User mode)

….

Save regs to kernel stack


Move to kernel mode

Jump to trap handler

Handle trap

Execute the system call


Return-from-trap

Restore regs from kernel stack

Move to user mode


Jump to PC after trap

…

Return from main()


trap (via exit())

Free memory of process

Remove process from process list



Problem 2: How to Switch between Process?
Lets draw some parallels

How can this situation be handled? - What can be the possibilities?
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Cooperative Approach 
Non-Preemptive 
• Wait for system calls 


• OS trusts the processes to behave reasonably (Give control back - Yield() call)


• Process transfer the control to the CPU by making a system call


• There can be misbehaving process (They may try to do something they shouldn’t)


• Divide by zero or attempting to access memory it shouldn’t


• Trap to OS -> OS will terminate the process


• Used in initial versions of Mac OS, Old Xerox alto system


• What if there is an infinite loop & process never terminates?  - Reboot
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Non-Cooperative Approach
Preemptive
• OS takes control  

• The only way in cooperative approach to take control is reboot


• Without Hardware support, OS can’t do much!


• How can OS gain control?
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• Simple solution - Use interrupts 

• Timer interrupt was invented many years ago


• Every X milliseconds, raise an interrupt -> halt the process -> invoke interrupt 
handler -> OS regains control



Non-Cooperative Approach
Preemptive - Timer Interrupt

• During boot sequence, OS starts the timer


• The time raises an interrupt every “X” milliseconds


• The timer interrupt gives OS the ability to run again on CPU


• Two decisions are possible - Component called Scheduler comes into picture


• Continue with current process after handling interrupt


• Switch to a different process => OS executes Context Switch
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Context Switch

• A low-level piece of assembly code


• Save a few register values from executing 
process registers to kernel stack

• General purpose registers

• Program counter

• Kernel stack pointer


• Restore values for the next process

• essentially return-from-trap will go to new 

process


• Switch to Kernel stack for the next process
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OS @ boot (Kernel mode) Hardware

Initialise trap table Remember address of..

Syscall handler.. 

Timer handler

Start interrupt timer Start timer

Interrupt CPU every “X” milliseconds

OS @ run (Kernel mode) Hardware Program (User mode)
Process A


….
Timer interrupt


Save regs(A) to k-stack(A)

Move to kernel mode

Jump to trap handler


LDE Protocol (Timer Interrupt)
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LDE Protocol (Timer Interrupt)
OS @ boot (Kernel mode) Hardware Program (User mode)

Handle the trap

Call switch() routine


Save regs(A) to proc-struct(A)

Restore regs(B) from proc-struct(B)


Switch to k-stack(B)

Return-from-trap (into B)

…..

Restore regs(B) from k-stack(B)


Move to user mode

Jump to B’s PC

Process B

…



What if?

• During handling of one interrupt another interrupt occurs?


• Disable interrupt during interrupt processing


• Sophisticated locking mechanism to protect concurrent access to internal 
data structures
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How to decide which process to run next?



Need for Policies (Scheduling)
Which process to schedule next on context switch?
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Scheduler



Scheduling in the Library Scenario
What we need to know to ensure good policy?

• How many users want to go to the reference section?


• What’s the purpose? - What type of book they want to read?


• How much time are they expected to be in the reference section?


• How frequently are new users coming in?


Essentially it would be good to have these estimates to make a good policy!
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What does it mean Concretely?

• For scheduling we need an idea of workload


• Assumptions about processes running in the system


• Number of processes 


• RAM required


• CPU utilisation


• Any Input/Output, if yes what kind?


• ….
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Lets start with some workload assumptions

Each process that is ready/needs to be executed and those executing - Job! 


Some Assumptions:


1. Each job runs for same amount of time 

2. All jobs arrive at the same time


3. All jobs only use the CPU (No I/O)


4. The run time or execution time of each job is known
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How good is the policy?
Some Key Scheduling Metrics

• Metric is something we used to measure


• Performance metric: Turnaround time


• Time difference between job completion time and the arrival time





• Another metric is fairness -  Jains fairness index: How fair is the scheduling?


• May not go hand in hand with performance

Tturnaround = Tcompletion − Tarrival
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Scenario 1
All Assumptions in tact

• Imagine three jobs - Whatsapp, Skype and Teams update arriving at same 
time


• Each of them take same time to complete

31

Process Arrival Time to Complete

Whatsapp (w) ~0 20

Skype (S) ~0 20

Teams (T) ~0 20

How to go about this?



First Come First Serve Policy

• The most basic algorithm a scheduler can implement


•  Whoever comes first, give them the access


• Assume that they arrive at the same time - At time = 0


• For sake of simplicity W just arrived before T which just arrived before S
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First Come First Serve (FCFS) Policy
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Avg(Tturnaround) =
20 + 40 + 60

3
= 40

• Policy: Schedule the job came first


• As soon as it is done, schedule the 
job that came next, continue


• There is an assumption here that 
each job runs for the same time


• What if that’s not the case?


• Let us relax this assumption



What if each job no longer runs for same time?
Relaxing assumption 2
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Avg(Tturnaround) =
100 + 120 + 140

3

= 120



FCFS is not that great
Convoy Effect
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• Waiting time can go very high


• Convoy effect!


• Think about waiting in single line in grocery store where 
you just have one item to purchase



What if?

• Every one said that they will need this much time for accessing the reference 
section


• Librarian schedules based on the time they say
36



Shortest Job First (SJF) Policy

• Idea originating from operations research


• Policy: Run the shortest job first 
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Process Arrival Time to Complete

W 0 100

S 0 20

T 0 20

How to go about this?



Shortest Job First (SJF) Policy
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• Assume that all jobs came at the same time


• Clearly whatsapp takes most amount of time

Avg(Tturnaround) =
20 + 40 + 140

3

= 66.3

Is that a bit too unrealistic? - In reality jobs can arrive at any time



Shortest Job First (SJF) Policy
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• Whatsapp job arrives first


• Teams and Skype jobs arrives 
around t = 20


Avg(Tturnaround) =
100 + 100 + 120

3

= 106.6

Even worst!! How to improve?



Shortest Time to Completion First (STCF)

• Adding preemption to Shortest Job First (SJF) Policy 


• More like preemptive SJF


• Policy: Any time a new job enters the system,


• Check how much time is remaining for existing jobs


• Check the time that is required for the new one


• Execute the one that shall complete first
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Shortest Time to Completion First (STCF)
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Avg(Tturnaround) =
(140 − 0) + (40 − 20) + (60 − 20)

3
= 66.3



Can we improve this a bit more?

• What about the user side?


• What if this is an interactive process?


• Think about going to Amazon or Working with some desktop application


• Imagine a user sitting in front of the machine and executing the 
command


• The machine identifies the nature of the job and schedules it


• What about response time?
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Tresponse = Tfirstrun − Tarrival
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Thank you 
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Email: karthik.vaidhyanathan@iiit.ac.in 

Twitter: @karthi_ishere

http://karthikv1392.github.io/cs3301_osn
mailto:karthik.vaidhyanathan@iiit.ac.in

