L~

Refactoring: An
Introduction

CS6.401 Software Engineering

g 0 1[h\l AT @q‘”\e@w Yes M\\fd] Ccvﬂ've,

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

SR o
INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generate
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan
Sources:
1. Refactoring, Improving the design of existing code, Martin Fowler et al., 2000
2. Refactoring for Software design Smells, Girish Suryanarayana et al.
3. martinfowler.com
4. Few articles by Ipek Ozkaya and Robert Nord, SEI, CMU

https://martinfowler.com/

As an E-type system evolves, its complexity increases unless work is done

to maintain or reduce it
-- Lehmans’ Law of Increasing Complexity

Lehman, M. M. (1980). "On Understanding Laws, Evolution, and Conservation in the Large-Program Life Cycle".
Journal of Systems and Software. 1. 213-221. doi:10.1016/0164-1212(79)90022-0

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0164-1212%2879%2990022-0

Few Examples to Begin with..

@ Payment

o isUPI: boolean

o isInternetBanking: boolean
o paymentld: String

o userld: String

m processUPIPayment(): String
m processinternetBanking(): String

Do you see some issues here?

Few Examples to Begin with..

.

@ Vehicle

@ Moped

o vehicleld: String

(©) Bike

o mopedRegNum: String o bikeRegNum: String

@ Car

o addDetails(): String o addDetails(): String

o carRegNum: String

What about this?

o addDetails(): String

Ever heard about Technical I
Debt?

What is Debt?

« debt

/det/

noun

a sum of money that is owed or due.

"l paid off my debts"

Similar: bill account tally

4

Source: Google dictionary - Oxford, entrepreneur.com

Technical Debt

Technical Debt

Customer's view

Image source: medium, google images

Technical Debt - Definition

Technical debt is the debt that accrues when you knowingly
unknowingly make wrong or non-optimal design decisions

Metaphor coined by Ward Cunningham, 1992

/ How do I modify
this? This looks

\ impossible

its just a quick fix
add to the code

Quick fix Add a feature Add more features

Software Timeline

or

Types of Technical Debt

Technical Debt

o@; . *"9
4

Code Debt Design Debt Architecture Debt Documentation Debt

4 E) @e

Design Stamina Hypothesis

good design

cumulative
functionality

no design

...but up here there's no
useful trade-off

—-—-design payoff line

down here it may be worth
trading off design quality
for time to market...

time

source: martinfowler.com

11

Impact of Technical Debt

“One large North American bank learned that its more than 1,000 systems and
applications together generated over $2 billion in tech-debt costs” - McKinsey

* Interest is very much compounding in nature - changes has to be done
on already existing debt

* Cost of Change becomes extremely high!

 Affects morale of development team

* Huge impact on progress of the business - product and feature delays
* Often considered as the digital dark matter!

12
Source: https://www.mckinsey.com/capabilities/mckinsey-digital /our-insights /demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

Impact of Technical Debt - An Example Scenario

A successful company in the maritime equipment industry successfully evolved its
products for 16 years, in the process amassing 3 million lines of code. Over these 16
years, the company launched many different products, all under warranty or
maintenance contracts; new technologies evolved; staff turned over; and new
competitors entered the industry.

The company's products were hard to evolve. Small changes or additions led to large
amounts of work in regression testing with the existing products, and much of the
testing had to be done manually, over several days per release. Small changes often
broke the code, for reasons unsuspected by the new members of the development
team, because many of the design and program choices were not documented.

What were some things they could have done right?

Source: Ozkaya, |. and Nord, R. . 2019: Managing the Consequences of Technical Debt: 5 Stories from the Field. Carnegie Mellon University's Software Engineering Institute
Blog,. https://doi.org/None (Accessed January 13, 2023)

Impact of Technical Debt - Another Case
Southwest Airlines: ‘Shameful’ Technical Debt Bites Back

@ BY: RICHI JENNINGS ON JANUARY 5, 2023 — 0 COMMENTS

Welcome to The Long View—where we peruse the news of the week and strip it to the essentials. Let’s work out what really
matters.

20 Years of Neglect Led to ‘Meltdown’

Last month’s débacle of canceled flights was caused by decades of technical debt. That’s the analysis of Columbia
University professor Zeynep Tufekci.

Analysis: SWA needs a cloud burst

Although there were several contributing factors, a lack of scalability in a critical crew scheduling system led to days of near-
total paralysis: In many cases, the staff were in the right place to fly and crew the planes, but the SkySolver system had no
way of knowing that. Making things worse, manual fallbacks collapsed under the weight of the workload.

The answer: ... employee scheduling software that debuted around the same time as the Xbox 360 and PlayStation 3.
... Southwest pilots have reportedly begged company executives to update the “antiquated” systems since at least
2015.

Eventually someone has to pay for the debt!!

14
Source: https://devops.com/southwest-technical-debt-richixbw/

Reasons for Technical Debt

Everyone in the decision making could be blamed - Architects, developers, managers..

but that doesn’t end there. There are many other reasons..

* Schedule pressure - Copy paste programming

* [ts not always about getting the syntax right and making something
work

* Lack of skilled designers — Poor applications of design principles
* Lack of awareness about best practices
* Leading in the wrong direction

* Lack of awareness of key indicators and refactoring - Design issues
* Periodic review of design and making changes can go a long way!!

Lot of research being done!

TechDebt 2024

7th International Conference on Technical Debt | Sun 14 - Mon 15 April Lisbon, Portugal co-located with ICSE 2024

LISBON | APRIL 14-20

Hidden Technical Debt in Machine Learning Systems P@RT%Y%CA.L lCS E 24

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips
{dsculley, gholt, dgg, edavydov, toddphillips}@google.com
Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Frangois Crespo, Dan Dennison 40t h I nte rn ati O n a I
{ebner, vchaudhary, mwyoung, jfcrespo, dennison}@google .com
Google, I Conference on Software
Maintenance and Evolution

Flagstaff, AZ, USA

CSME 224 Oct 6 - Oct 11, 2024

Abstract

Machine learning offers a fantastically powerful toolkit for building useful com-
plex prediction systems quickly. This paper argues it is dangerous to think of
these quick wins as coming for free. Using the software engineering framework
of technical debt, we find it is common to incur massive ongoing maintenance
costs in real-world ML systems. We explore several ML-specific risk factors to
account for in system design. These include boundary erosion, entanglement,
hidden feedback loops, undeclared consumers, data dependencies, configuration
issues, changes in the external world, and a variety of system-level anti-patterns.

16
Source: respective conference websites

Managing Technical Debt

T LORKING ON?
* Increase awareness about tech debt AT ARE YOO LIORAING O
. . TRYNG TO Fix THE. PROBLEMS T
* Being aware is the best start CREATED WHEN T TRED To Fix
. - i M THE. PROBLEMS I CREATED \JHEN
Create goals keeping this in mind L TRED T FIX THE. PROBLENS
* Detect and repay tech debt systematically % ICRERTEDL}HBQ...
* Identify instances of debt (huge impact)

* Create systematic plan on recovery

 Prevent accumulation of tech debt

* Once under control, prevent further accumulation
* Perform regular monitoring

» Companies should allocate some budget for tech debt

17
Image source: xkcd

Key Major Questions

1. Why do even good developers write bad software?
2. How do we fix our software?

3. How to know if the software is “bad” even when its working fine?

1§

Any fool can write code that a computer can understand.
Good Programmers write code that humans can
understand”

Martin Fowler .
Thoughtworks

Image source: thoughtworks

What is Refactoring?

It is a change made to the internal structure of software to make it easier to

understand and cheaper to modify without changing its observable
behaviour

-- Martin Fowler

S0 THAT'S

REFACT
Emnr* o

4mm IT'S WORKING
PERFECTLY SO TRY NOT
TOTOUCH ANYTHING

21
Image source: imageflip.om

What is Refactoring?

* Refactoring is not always a clean up of code!
* Goal is to make software easier to understand and modify
* Think of performance optimization

* Refactoring does not or should not change behavior - No change to
external user [Changing hats]

* Not always same as:
* Adding features
* Debugging code
* Rewriting code

Image source: imageflip.om

When to Refactor?

e Follow the rule of three
* First time, just get it done
* Second time to do something similar, duplicate
* Third time, just refactor

* Refactor when you add a function (feature)
 When adding new feature, make it more effective and efficient

* Refactor when you fix a bug
* Bug by themselves can be good indicators - Are they becoming more common?

* Refactor when you do code reviews
* Create review groups for code reviews, new perspective may lead to refactoring

Image source: imageflip.om

Some Common Refactoring - Low Level refactoring

* IDEs provide a lot of support

* Variable/method/class renaming
 Extraction of duplicate code snippets

* Change in method signature

* Method or constant extraction

* Warnings about unused variables,
parameter uses/declarations

» Auto-completion support and minimal
documentation support

Image source: Intellij.com

public String getStylus() {

return Ea000;

} Refactor This

interface Device{

} void touchBy3 2. Move... F6 !
3. Copy... F5
4. Safe Delete... H®

Extract

5. Variable... 38V
6. Constant... \3C
7. Field... \38F
8. Parameter... 3P
9. Functional Parameter... (3P
0. Functional Variable...
Method... \#EM

Type Parameter...
Method Object...
Delegate...
Interface...
Superclass...

24

High-level refactoring - Challenges

* Much more complex - has dependency on use case, context

* Risk of introducing bugs — Changes in design can introduce new issues
* Testing can become difficult - New test cases needs to be added, overall
Behavior may change [ideally not!]

 Communication of changes — Changes can be more abstract and harder
to explain

* Measuring the impact - Changes can be harder to quantify

Image source: imageflip.om

Summary So Far

Technical Debt - Definition

Technical debt is the debt that accrues when you knowingly or
unknowingly make wrong or non-optimal design decisions

Metaphor coined by Ward Cunningham, 1992

{ How do I modify’
this? This looks
\ impossible

((its just a quick fix

ﬁts just a quick fix
add to the code

add to the code

)

Quick fix Add a feature Add more features

v

Software Timeline

What is Refactoring?

It is a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable
behaviour

-- Martin Fowler

|
PERFECTLY SO TRY N
|

Image source: imageflip.om

Types of Technical Debt

Technical Debt

Code Debt Design Debt Architecture Debt Documentation Debt

I B0

High-level refactoring - Challenges

* Much more complex - has dependency on use case, context

10

* Risk of introducing bugs - Changes in design can introduce new issues

* Testing can become difficult - New test cases needs to be added, overall

Behavior may change [ideally not!]

* Communication of changes — Changes can be more abstract and harder

to explain
* Measuring the impact — Changes can be harder to quantify

Image source: imageflip.om

24

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

