
Refactoring:	An	
Introduction

CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The	 materials	 used	 in	 this	 presentation	 have	 been	 gathered/adapted/generate	
from	various	sources	as	well	as	based	on	my	own	experiences	and	knowledge
	 	 	 	 	 	 	 	 	--	Karthik	Vaidhyanathan

Sources:

1. Refactoring,	Improving	the	design	of	existing	code,	Martin	Fowler	et	al.,	2000
2. Refactoring	for	Software	design	Smells,	Girish	Suryanarayana	et	al.
3. martinfowler.com
4. Few	articles	by	Ipek	Ozkaya	and	Robert	Nord,	SEI,	CMU

2

https://martinfowler.com/

As	an	E-type	system	evolves,	its	complexity	increases	unless	work	is	done	
to	maintain	or	reduce	it	 	
	 	 	 	 	 		--	Lehmans’	Law	of	Increasing	Complexity

3
Lehman, M. M. (1980). "On Understanding Laws, Evolution, and Conservation in the Large-Program Life Cycle".
Journal of Systems and Software. 1: 213–221. doi:10.1016/0164-1212(79)90022-0

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2F0164-1212%2879%2990022-0

Few	Examples	to	Begin	with..

4

Do	you	see	some	issues	here?

Few	Examples	to	Begin	with..

5

What	about	this?

Ever	heard	about	Technical	
Debt?

6

What	is	Debt?

7
Source:	Google	dictionary	-	Oxford,	entrepreneur.com

Technical	Debt

8
Image	source:	medium,	google	images

Technical	Debt	- Definition

9

Technical debt is the debt that accrues when you knowingly or
unknowingly makewrong or non-optimal design decisions
Metaphor	coined	by	Ward	Cunningham,	1992

Types	of	Technical	Debt

10

Design	Stamina	Hypothesis

11
source:	martinfowler.com

Impact	of	Technical	Debt

12

“One	large	North	American	bank	learned	that	its	more	than	1,000	systems	and	
applications	together	generated	over	$2	billion	in	tech-debt	costs”	-McKinsey	

• Interest	is	very	much	compounding	in	nature	– changes	has	to	be	done	
on	already	existing	debt
• Cost	of	Change	becomes	extremely	high!
• Affects	morale	of	development	team
• Huge	impact	on	progress	of	the	business	– product	and	feature	delays
• Often	considered	as	the	digital	dark	matter!

Source:	https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

Impact	of	Technical	Debt	– An	Example	Scenario

13

A	successful	company	in	the	maritime	equipment	industry	successfully	evolved	its	
products	for	16	years,	in	the	process	amassing	3	million	lines	of	code.	Over	these	16	
years,	the	company	launched	many	different	products,	all	under	warranty	or	
maintenance	contracts;	new	technologies	evolved;	staff	turned	over;	and	new	
competitors	entered	the	industry.
The	company's	products	were	hard	to	evolve.	Small	changes	or	additions	led	to	large	
amounts	of	work	in	regression	testing	with	the	existing	products,	and	much	of	the	
testing	had	to	be	done	manually,	over	several	days	per	release.	Small	changes	often	
broke	the	code,	for	reasons	unsuspected	by	the	new	members	of	the	development	
team,	because	many	of	the	design	and	program	choices	were	not	documented.

Source: Ozkaya, I. and Nord, R. . 2019: Managing the Consequences of Technical Debt: 5 Stories from the Field. Carnegie Mellon University's Software Engineering Institute
Blog,. https://doi.org/None (Accessed January 13, 2023)

What	were	some	things	they	could	have	done	right?

Impact	of	Technical	Debt	– Another	Case

14
Source:	https://devops.com/southwest-technical-debt-richixbw/

Eventually	someone	has	to	pay	for	the	debt!!

Reasons	for	Technical	Debt

15

• Schedule	pressure	– Copy	paste	programming
• Its	not	always	about	getting	the	syntax	right	and	making	something	
work

• Lack	of	skilled	designers	– Poor	applications	of	design	principles
• Lack	of	awareness	about	best	practices	
• Leading	in	the	wrong	direction

• Lack	of	awareness	of	key	indicators	and	refactoring	- Design	issues
• Periodic	review	of	design	and	making	changes	can	go	a	long	way!!

Everyone	in	the	decision	making	could	be	blamed	–	Architects,	developers,	managers..
but	that	doesn’t	end	there.	There	are	many	other	reasons..

Lot	of	research	being	done!

16
Source: respective conference websites

Managing	Technical	Debt

17

• Increase	awareness	about	tech	debt
• Being	aware	is	the	best	start
• Create	goals	keeping	this	in	mind

• Detect	and	repay	tech	debt	systematically
• Identify	instances	of	debt	(huge	impact)
• Create	systematic	plan	on	recovery

• Prevent	accumulation	of	tech	debt
• Once	under	control,	prevent	further	accumulation
• Perform	regular	monitoring

• Companies	should	allocate	some	budget	for	tech	debt

Image	source:	xkcd

Key	Major	Questions

18

1. Why	do	even	good	developers	write	bad	software?

2. How	do	we	fix	our	software?

3. How	to	know	if	the	software	is	“bad”	even	when	its	working	fine?

Refactoring!

19

20

“Any	fool	can	write	code	that	a	computer	can	understand.	
Good	Programmers	write	code	that	humans	can	
understand”

Martin	Fowler
Thoughtworks

Image	source:	thoughtworks

What	is	Refactoring?

21

It	is	a	change	made	to	the	internal	structure	of	software	to	make	it	easier	to	
understand	and	cheaper	to	modify	without	changing	its	observable	
behaviour																																							
	 	 	 	 	 	 	 	 	 --	Martin	Fowler

Image	source:	imageflip.om

What	is	Refactoring?

22

• Refactoring	is	not	always	a	clean	up	of	code!
• Goal	is	to	make	software	easier	to	understand	and	modify
• Think	of	performance	optimization	
• Refactoring	does	not	or	should	not	change	behavior	– No	change	to	
external	user	[Changing	hats]
• Not	always	same	as:
• Adding	features
• Debugging	code
• Rewriting	code

Image	source:	imageflip.om

When	to	Refactor?

23

• Follow	the	rule	of	three
• First	time,	just	get	it	done
• Second	time	to	do	something	similar,	duplicate
• Third	time,	just	refactor

• Refactor	when	you	add	a	function	(feature)
• When	adding	new	feature,	make	it	more	effective	and	efficient

• Refactor	when	you	fix	a	bug
• Bug	by	themselves	can	be	good	indicators	– Are	they	becoming	more	common?	

• Refactor	when	you	do	code	reviews
• Create	review	groups	for	code	reviews,	new	perspective	may	lead	to	refactoring

Image	source:	imageflip.om

Some	Common	Refactoring	– Low	Level	refactoring

24
Image	source:		Intellij.com

• IDEs	provide	a	lot	of	support
• Variable/method/class	renaming
• Extraction	of	duplicate	code	snippets
• Change	in	method	signature
• Method	or	constant	extraction
• Warnings	about	unused	variables,	
parameter	uses/declarations
• Auto-completion	support	and	minimal
documentation	support

High-level	refactoring	- Challenges	

25

• Much	more	complex	– has	dependency	on	use	case,	context
• Risk	of	introducing	bugs	– Changes	in	design	can	introduce	new	issues
• Testing	can	become	difficult	– New	test	cases	needs	to	be	added,	overall
Behavior	may	change	[ideally	not!]
• Communication	of	changes	– Changes	can	be	more	abstract	and	harder	
to	explain
• Measuring	the	impact	– Changes	can	be	harder	to	quantify

Image	source:	imageflip.om

Summary	So	Far

26

Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

