
Design	Smells	and	
Refactoring

CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	 materials	 used	 in	 this	 presentation	 have	 been	 gathered/adapted/generate	
from	various	sources	as	well	as	based	on	my	own	experiences	and	knowledge
	 	 	 	 	 	 	 	 	--	Karthik	Vaidhyanathan

Sources:

1. Refactoring,	Improving	the	design	of	existing	code,	Martin	Fowler	et	al.,	2000
2. Refactoring	for	Software	design	Smells,	Girish	Suryanarayana	et	al.
3. martinfowler.com
4. Few	articles	by	Ipek	Ozkaya	and	Robert	Nord,	SEI,	CMU

2

https://martinfowler.com/


How	to	Identify	Technical	
Debts	and	Refactor?

3



Software	Quality	as	an	Indicator

4



How	to	Refactor?

5

• Identify	the	refactoring	points
• Create	a	refactoring	plan
• Make	a	backup	of	the	existing	codebase:	Versioning	system
• Use	semi-automated	approach:	Some	tool	support	is	always	available
• Perform	the	refactoring	
• Test	if	everything	works	like	before!	–	Test	extensively	(new	bugs,	
broken	functionalities,	etc.)
• Repeat	the	process

Remember:	Refactoring	is	not	just	a	one	time	activity!!



Code	Smells?	You	heard	that	right!

6
Source: https://engineering.99x.io/natural-odor-of-a-developer-f7f7fbb838e3



Refactoring	Points	- Things	starts	to	rot	and	Smell

7

Code	Smells	and	so	does	design	– You	heard	that	right!!!

”smell”,	Coined	by	Kent	Beck	in	1999

Smells	are	certain	structures	in	the	code	that	suggest (sometimes	they
scream	for)	the	possibility	of	refactoring	

A	”bad	smell"	describes	a	situation	where	there	are	hints	that	suggest
there	can	be	a	design	problem

Many	different	definitions	- https://zenodo.org/record/1066135#.Y8PcXS8RpQI

Many%20different%20definitions%20-%20https:/zenodo.org/record/1066135


Many	methods,	reasons,	ways	to	detect..

8
Tushar	Sharma,	Diomidis	Spinellis,	A	survey	on	software	smells,	Journal	of	Systems	and	Software,	Volume	138,	2018



9

Types	of	Design	Smells



Missing	Abstraction	– Example	Scenario

Scenario:	Consider	the	e-bike	system	which	requires	to	store	address	of	
every	user

10

Data	clumps!!



Missing	Abstraction	– Example	Refactoring

Solution:	Refactor	the	design,		move	collection	of	primitive	types	and	
form	a	separate	class

11



Abstraction	Smell	– Missing	Abstraction

Indication:	Usage	of	clumps	of	data	or	strings	used	instead	of	class	or	
interface
Rationale:	Abstraction	not	identified	and	represented	as	primitive	types
Causes:	Inadequate	design	analysis,	lack	of	refactoring,	focus	on	minor	
performance	gains
Impact:	Affects	understandability,	extensibility,	reusability,	.

12



Abstraction	Smell	– Imperative	Abstraction
Scenario:	Consider	the	e-bike	system	where	students	have	to perform	
different	operations	on	their	wallet

13

What	all	problems	do	you	foresee?

Wallet	will	have	different	properties



Abstraction	Smell	– Example	Refactoring

Solution:	Refactor	the	design,		move	the	functions	into	one	class	and	
bundle	it	with	data	

14

Remember	abstraction	is	all	about	generalization
And	specification	of	common	and	important	characteristics!!	



Abstraction	Smell	– Imperative	Abstraction
Indication:	Operation	is	turned	into	a	class.	A	class	that	has	only	one	
method	defined	in	it
Rationale:	Defining	functions	explicitly	as	classes	when	data	is	located	
somewhere	violates	OOPS	principles.	Increases	complexity,	reduce	
cohesiveness
Causes:	Procedural	thinking	(capture	the	bundled	nature)
Impact:	Affects	understandability,	extensibility,	testability,	reusability..

15



Abstraction	- Enablers

• Crisp	boundary	and	identity
• Make	abstractions	when	necessary	and	have	clear	boundaries

• Map	domain	entities
• Vocabulary	mapping	from	problem	domain	to	solution	domain

• Ensure	coherence	and	completeness
• Completely	support	a	responsibility,	don’t	spread	across

• Assign	Single	and	Meaningful	Responsibility
• Each	abstraction	has	unique	and	non-trivial	responsibility

• Avoid	Duplication	
• The	abstraction	implementation	and	the	name	appears	only	once	in	design

16



Encapsulation	Smell	– Deficient	Encapsulation

Scenario:	Consider	the	e-bike	system	where	user	details	like	DOB,	gender,	
etc.	are	public

17



Encapsulation	Smell	– Example	Refactoring	

Solution:	Refactor	the	design,		modify	the	access	specifiers	without	
affecting	others

18



Encapsulation	Smell	– Deficient	Encapsulation

Indication:	One	or	more	members	is	not	having	required	protection	
(eg:	public)
Rationale:	Exposing	details	can	lead	to	undesirable	coupling.	Each	change	in	
abstraction	can	cause	change	in	dependent	members
Causes:	Easier	testability,	procedural	thinking	(expose	data	as	global	
variables),	quick	fixes
Impact:	Affects	changeability,	extensibility,	reliability,…

19



Encapsulation	Smells	– Leaky	Encapsulations

Scenario:	Consider	the	e-bike	system	where	the	docking	station	class	
provides	list	of	bikes	parked	in	that	station

20



Encapsulation	Smell	– Example	Refactoring	

Solution:	Refactor	the	design,		make	return	types	of	public	more	abstract	
to	support	modifiability,	ensure	clients	do	not	get	direct	access	to	change	
internal	state

21List	can	be	anything,	internally	it	can	be	ArrayList	or	TreeList,	etc.



Encapsulation	Smells	– Leaky	Encapsulations

Indication:	Abstraction	leaks	implementation	details	(public	methods)
Rationale:	Implementation	details	needs	to	be	hidden, Internal	state	can	
be	corrupted	due	to	open	methods
Causes:	lack	of	awareness,	project	pressure	(quick	hacks),	too	fine-
grained	public	methods	exposed	(think	of	simple	setter)
Impact:	Affects	changeability,	reusability,	Reliability

22



Encapsulation	- Enablers

• Hide	implementation	details
• Abstraction	exposes	only	what	abstraction	offers	and	hides	implementation
• Hide	data	members	and	details	on	how	the	functionality	is	implemented

• Hide	Variations
• Hide	implementation	variations	in	types	or	hierarchies
• Easier	to	make	changes	in	abstraction	implementation	without	affecting	subclasses	
or	collaborators

23



Modularization	Smells	– Broken	Modularization
Scenario:	Bike	class	gets	all	data	from	BikeDetails class but	all	
operations	resides	in	Bike	Class

24



Modularization	Smells	– Example	Refactoring

Solution:	Refactor	the	design	in	such	a	way	that	the	data	and	methods	
stay	together	as	a	unit.	Enhancing	cohesiveness	is	the	key

25



Modularization	Smells	– Broken	Modularization

Indication:	Data	and	methods	are	spread	across	instead	of	being	bundled
Rationale:	Having	data	in	one	and	methods	in	another results	in	tight	
coupling,	violates	modularity
Causes:	Procedural	thinking,	lack	of	understanding	of	existing	design
Impact:	Affects	changeability	and	extensibility,	reusability,	Reliability

26



Modularization	Smells	– Enablers	
• Localize	related	data	and	methods
• All	the	data	and	method	related	to	one	class	should	be	kept	in	the	same	class

• Abstractions	should	of	manageable	size
• Ensure	classes	are	of	manageable	size	– mainly	affects	maintainability,	
extensibility	and	understandability

• Ensure	there	are	no	cyclic	dependencies
• Graph	of	relationships	between	classes	should	be	acyclic

• Limit	Dependencies
• Create	classes	with	low	fan-in	and	low	fan	out

• Fan-in:	number	of	incoming	dependencies
• Fan-out:	number	of	outgoing	dependencies

27



Hierarchy	Smells	– Missing	Hierarchy

Scenario:	In	the	e-vehicle	scenario,	user	can	pay	in	any	mode	of	
payment

28

One	way	to	support	different	types	of	payment	is	to	write	them	
inside	makePayment	function	



Hierarchy	Smells	– Example	Refactoring

Solution:	Refactor	by	creating	hierarchies	based	on	the	behavior	
changes	that	comes	under	payment	function.	Put	the	common	parts	in	
parent	class	(think	about	abstract	class	or	interfaces	as	well)

29

Note:	DebitCard	and	
CreditCard	needs	to	be
Specialized	and	generalized	into	
Cards	only	if	
They	have	enough	variation	
points



Hierarchy	smells	– Missing	Hierarchy

Indication:	Using	if	conditions	to	manage	behavior	variations	instead	of	
creating	hierarchy
Rationale:	Using	chained	if-else	or	Switch	indicates	issues	with	handling	
variations.	Commonality	among	the	types	can	also	be	used	
Causes:	”simplistic	design”,	procedural	approach,	overlooking	inheritance
Impact:	Reliability,	Testability,	understandability,	extensibility,..	

30



Hierarchy	smells	– Example	Scenario

Scenario:	Each	bike	can	be	of	different	model	resulting	in	different	design	
(shape,	colour,	etc.)

31



Hierarchy	smells	– Refactoring

Solution:	Remove	hierarchy	and	transform	subtypes	into	instance	variables

32



Hierarchy	smells	– Unnecessary	Hierarchy

Indication: Inheritance	has	been	applied	needlessly	for	a	particular	context
Rationale:	The	focus	should	be	more	on	capturing	commonalities	and	
variation	in	behavior	than	data.	Violation	results	in	unnecessary	hierarchy
Causes:	subclassing	instead	of	instantiating,	taxonomy	mania	(overuse	of	
inheritance)
Impact:	Understandability,	Extensibility,	Testability..	

33



Hierarchy	Smells	- Enablers

• Apply	meaningful	classification
• Identify	commonalities	and	variations	– Classify	into	levels

• Apply	meaningful	generalization	
• Identify	common	behavior	and	elements	to	form	supertypes

• Ensure	Substitutability
• Reference	of	supertype	can	be	substituted	with	objects	of	subtypes

• Avoid	redundant	paths
• Avoid	redundant	paths	in	inheritance	hierarchy

• Ensure	proper	ordering
• Express	relationships	in	a	consistent	and	orderly	manner

34



Some	General	Observations
• Analyze	your	design
• Is	this	abstraction	enough?
• Is	there	some	responsibility	overload?
• Have	we	made	use	of	the	right	set	of	access	modifiers?
• Only	expose	what	is	necessary	
• Ensure	high	cohesiveness	and	loose	coupling
• Create	hierarchies	whenever	necessary	(only	when	necessary)

• Always	remember,	refactoring	is	not	a	one-time	process
• The	more	it	is	delayed,	the	more	debt	is	incurred!
• Combination	of	design	smells	exists
• Code	can	serve	as	good	indicators	of	design	smells	– Code	also	smells!

35



Next	up:	Code	Smells	and	
Code	Metrics!!

36



Group	Activity

37



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

