
Code	Smells	and	
Code	Metrics
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanathan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	 materials	 used	 in	 this	 presentation	 have	 been	 gathered/adapted/generate	
from	various	sources	as	well	as	based	on	my	own	experiences	and	knowledge
	 	 	 	 	 	 	 	 	--	Karthik	Vaidhyanathan

Sources:

1. Refactoring,	Improving	the	design	of	existing	code,	Martin	Fowler	et	al.,	2000
2. Various	research	articles	that	have	been	duly	cited

2



How	to	get	insights	from	
existing	software	systems?

3



Mining	Software	Repositories

4

• Large	amount	of	artefacts	are	generated	in	the	software	development	process

• These	data	are	available	from	various	sources	
• Version	control	systems	(SVN,	Mercurial,..)
• Q&A	Forums	(Stackoverflow,	Stackexchange,	etc.)
• Bug	repositories	(BugZilla,	Jira)
• Code	repositories	(Github,	Gitlab,	etc.)
• Crash	reports,	log	files,	execution	traces,	etc.

The	MSR	field	analyzes	rich	data	available	in	software	repositories	to	extract	useful	
and	actionable	information	about	software	projects	and	systems	–	msrconf.org



Mining	Software	Repositories

5

Repositories are great sources of unbiased data on how a product came to be	-		
something that's very valuable and hard to find.
	 	 	 	 	 	 	 																							--	Andreas	Zeller	

Source	of	quote:	Walter	Tichy.	2010.	An	Interview	with	Prof.	Andreas	Zeller:	Mining	your	way	to	software	reliability.	Ubiquity	2010,	November,	Article	3	(November	2010),	6	pages.	

https://2024.msrconf.org
• Generate	insights	on	best	practices	(eg:	Sources	of	technical	debt)
• Develop	approaches	for	automated	code	completions,	bug	localization,..
• 	…	

https://2024.msrconf.org/


But	what	about	code?

6



Code	can	also	Smell

7

Code	smell	serves	an	indication	that	there	is	deeper	
problem	in	the	system

• Code	smells	are	only	hints	–	not	necessarily	a	problem!

• Look	for	bad	smells	–	definitely	needs	a	refactoring!

• But	is	there	some	list	that	could	be	used?	Or	common	ones?

Image	source:	refactoring.guru



Some	Examples

8



Code	Smells	– Long	Method

9

Expand	the	comments	to	code	–	that’s	a	very	long	method!!



Long	Method		- Refactoring

10

What	changes	do	you	notice?	–	Any	comments	?	Can	we	do	better?



Code	Smells	- Long	Method	

11

Longer	a	procedure,	more	difficult	it	is	to	understand

Context:	 A	 method	 has	 to	 perform	 a	 series	 of	 computations	 to	 accomplish	 a	
functionality

Problem:	All	the	computations	are	written	in	its	entirety	inside	one	method	making	
the	method	long	-	Too	many	lines	of	code!!

Suggested	 Refactoring:	 Any	 method	 longer	 than	 20	 lines	 (even	 10+)	 is	 worth	
inspecting

Decompose	the	method	into	smaller	methods	->	Extract	Method

This	may	result	in	other	smells,	which	can	call	for	further	refactoring	–	parameter	list



Code	Smells	– Long	Parameter	List

12

See	the	number	of	parameters	that	are	taken	as	input	by	enrolmentHandler



Long	Parameter	List	– Refactoring

13

The	parameters	are	now	respective	objects,	can	we	do	further?

Check	parameters



Code	Smells	- Long	Parameter	List

14

Try	to	have	not	more	than	4	parameters	–	Not	a	Golden	rule

Context:	 A	 method	 has	 to	 perform	 a	 series	 of	 computations	 to	 accomplish	 a	
functionality	and	it	takes	in	lot	of	parameters

Problem:	 Hard	 to	 understand	 and	 the	 calling	 function/method	 needs	 to	 place	 the	
parameters	in	right	positions,	attracts	adding	of	even	more	parameters!!	

Suggested	Refactoring:	Multiple	ways	
• 	 Replace	parameter	with	method	(call	inside)
• 	 Preserve	whole	object
• 	 Introduce	 parameter	 object	 (if	 data	 items	 are	 related	 and	 no	 logical	 object				
exists

Long	parameter	 can	 indicate	other	 smells	 (eg:	 long	methods,	data	 clumps,	primitive	
obsession)



Code	Smells	– Primitive	Obsession

15

Overuse	of	primitive	types



Primitive	Obsession	– Refactoring

16

We	can	do	further,	can	we?

Check	type	of	parameters



Code	Smells	– Primitive	Obsession

17

Over	use	of	primitive	data	types	instead	of	objects

Context:	 A	 method	 has	 to	 perform	 a	 series	 of	 computations	 to	 accomplish	 a	
functionality	and	it	takes	in	lot	of	parameters	of	primitive	types

Problem:	 Having	 too	 many	 primitive	 types	 may	 lead	 to	 long	 parameters	 and	 can	
contribute	to	code	duplication	and	type	mismatches

Suggested	Refactoring:	Multiple	ways	
• 	 Replace	data	value	with	object	
• 		If	there	are	group	of	fields	(extract	class)
• 		If	there	are	fields	that	belong	to	object	(Introduce	parameter	object)

Primitive	 obsession	 can	 lead	 to	 other	 smells	 (eg:	 long	 methods,	 data	 clumps,	 long	
Methods,	etc.)



Code	Smells	– Switch	Statements	(Conditional	Complexity)

18

Too	many	conditions!!	Can
we	do	better?



Switch	Statements	(Conditional	Complexity)	- Refactoring

19

Leveraging	inheritance	and	polymorphism,	we	can	do	this	for	different	types	of	student



Code	Smells	– Conditional	Complexity

20

Complex	set	of	switch	or	sequence	of	if	conditions.	When	nesting	goes	too	far!!	

Context:	A	 Single	 class	 has	 some	 operations	 and	 it	 requires	 editing	multiple	 times	
when	changes	are	made	outside	the	class

Problem:	 Having	 too	 many	 conditional	 operations	 or	 switch	 makes	 it	 harder	 to	
understand,	and	high	probability	of	breaking,	testing	also	becomes	difficult

Suggested	Refactoring:	Multiple	ways	
• Introduce	polymorphism
• Extract	 and	move	 –	Group	 things	 that	 need	 to	 be	 together,	move	 to	 introduce	
polymorphism

• If	there	is	only	few	cases	that	affect	singe	method	–	use	extract	method
					[Polymorphism	can	become	overkill]



Code	Smells	– Divergent	Change

21What	could	be	some	issue	here	with	respect	to	instructor	class?



Divergent	Change	- Refactoring

22

Extract	class	and	put	the	functionalities	in	one	place	so	that	one	change	does	not	impact	others	

CourseManager Class



Code	Smells	– Divergent	Change

23

One	change	should	not	result	in	changes	in	”n”	other	places	within	a	class

Context:	A	class	has	a	method	to	perform	an	operation	which	is	affected	by	changes	
happening	in	another	method	in	same	or	different	class

Problem:	Impacts	maintainability	and	results	in	a	scenario	where	one	needs	to	know	
everything.	Also	affects	the	testability	and	understandability

Suggested	Refactoring:	Multiple	ways	
• Extract	Class	–	Put	everything	that	changes	together	into	one	class
• Extract	method	 –	 Check	 if	 the	 operations	 that	 change	 can	 be	wrapped	 into	 a	
single	method



Code	Smells	– Feature	Envy

24
One	class	depending	too	much	on	functions	from	another	class	–	Envious!!	



25Move	the	method	to	the	class	so	that	the	single	responsibility	principle	is	also	ensured

Feature	Envy	- Refactoring



Code	Smells	– Feature	Envy

26

Method	in	a	class	is	envious	of	features	offered	by	other	classes

Context:	A	class	has	a	method	that	needs	to	perform	operations	for	which	it	depends	
on	multiple	data	and	operations	in	another	class(es)

Problem:	 Causes	 coupling	 between	 different	 classes	 affecting	 extensibility	 and	
changeability.	Testing	also	becomes	challenging

Suggested	Refactoring:	Multiple	ways	
• Move	method	–	moving	the	method	to	where	it	belongs
• Extract	 and	 move	 method	 –	 When	 only	 part	 of	 the	 method	 has	 too	 much	
dependency



27

Code	Smells	– Speculative	Generality

Sometimes	we	over	design	and
overcomplicate	things	and	
speculate	!!

Do	we	even	need	an	inheritance	at	the	point



28

Speculative	Generality	- Refactoring

Refactoring	by	Collapsing	the	hierarchy



Code	Smells	– Speculative	Generality

29

Code	created	with	speculation	that	something	will	be	required	in	future	and	never	
implemented

Context:	 Classes	 have	 been	 built	 after	 extending	 classes	 creating	 inheritance	
relationship	but	never	used	or	features	have	been	planned	but	not	implemented

Problem:	 Unwanted	 complexity	 affecting	 understandability.	 Can	 lead	 to	 some	
implementations	 in	 the	child	classes	resulting	 in	unwanted	behaviour.	Can	be	spotted	
when	the	only	use	of	a	class	is	some	test	cases.

Suggested	Refactoring:	Multiple	ways	
• Collapse	Hierarchy	–	Remove	abstract	classes	not	doing	much
• Use	Inline	Class	–	Remove	unnecessary	delegation
• Remove	unused	parameters
• Rename	methods	to	be	in	line	with	context



Five	Main	Categories	Of	Smells

30

• Bloaters	–	Too	many	things	packed,	keeps	accumulating	
							(eg:	Long	Method,	primitive	obsession)

• Object	Oriented	Abusers	–	Incorrect	use	of	OO	principle	or	even	incomplete
(eg:	Conditional	complexity)

• Change	Preventers	–	Changing	one	causes	change	in	others
							(eg:	Divergent	Change)

• Dispensables	–	Code	whose	absence	won’t	make	a	difference,	but	presence	could!
							(eg:	Speculative	Generality)

• Couplers	–	Creates	too	much	coupling	between	classes
							(eg:	Feature	Envy)



Quick	Reference	Cards

31



32

Smell	Name Short	Description Suggested	Refactoring

Duplicated	Code Same	code	in	more	than	one	place Extract	Method,	pull	up	field,..

Long	Method Too	many	things	in	one	method Extract	Method,	Decompose	
conditionals,	Parameter	objects,..

Large	Class One	class	is	doing	too	much Extract	class,	extract	sub	classes.	
Extract	interface,..

Long	Parameter	List Never	ending	list	of	parameters Parameter	object,	Extract	Method,..

Divergent	Change Too	many	changes	in	one	class	for	different	
reasons

Extract	class,..

Shortgun Surgery One	change	=>	too	many	changes	 Move	Method,	Move	field,	Inline	class,..

Feature	Envy Interested	in	methods	of	another	class Extract	Method,	Move	Method

Data	Clumps Same	data	items	together	in	many	places Extract	Class,	Parameter	Object,	..

Primitive	Obsession Using	too	many	primitive	data	types Extract	class,	Introduce	parameter	
Object,..

Switch	Statements Complex	switch	statements,	conditionals,.. Replace	with	explicit	method,	Replace	
conditional	with	polymorphism,..

Parallel	Inheritance	hierarchies Requiring	parallel	subclasses	creation Move	Method	and	Move	field,..



33

Smell	Name Short	Description Refactoring

Lazy	Class Not	doing	much,	exists	there! Collapse	hierarchy,..

Speculative	Generality No	use	in	the	current	context	than	test Inline	class,	Collapse	hierarchy,..

Temporary	Field Having	instance	variables	not	used	much Extract	class	for	unused	variables,..

Message	Chains Ask	to	one	object	which	leads	to	next… Hide	Delegate,	extract	method	and	
move	method,..

Middle	Man Lots	of	delegations	happening Remove	Middle	Man,	Inline	Method,	
Replace	delegate	with	inheritance,..

Inappropriate	Hierarchy Too	much	private	information	shared	
between	classes	

Extract	class,	hide	delegate,	Extract	
class,	..

Alternative	Classes	different	
Interface

Two	classes	having	similar	methods
Using	different	interface

Move	method,	extract	superclass,..

Incomplete	Library	Class Modifying	library	class	can	be	impossible Introduce	local	extension,	foreign	
method,..

Data	Class Classes	with	just	some	data	fields Move	method,	Extract	method,..

Refused	Bequest Subclasses	don’t	need	everything Push	down	method,	Push	down	field,..

Comments Too	much	of	comments	is	also	bad Rename	method,	Extract	method,..



Refactoring	- Best	Practices

34

• Understand	code	well	before	refactoring
• What	you	think	might	be	a	problem	may	not	be	a	problem!

• Create	tests	and	ensure	the	tests	work	just	like	before	or	even	better

• Keep	refactoring	small	and	commit	often	–	Take	small	steps,	test	and	repeat

• The	scope	of	refactoring	needs	to	be	defined	clearly
• Sometimes	it	can	end	in	a	loop
• To	do	notes	can	be	always	useful

• It	always	helps	when	there	are	more	eyes	[Also	for	project!!]



Refactoring	– Some	Tools

35

• There	 is	 no	 single	 best	 tool	 that	 are	 available	 –	 Use	 your	 intuition	 along	 with	
existing	tools

• IDEs	provide	a	lot	of	support	–	Refactor	menu	(In	IntelliJ	IDEA)

• SonarLint	 –	 Like	 spellchecker	 for	 code,	 detects	 smells,	 checks	 for	 any	 possible	
issues	(available	for	IDE’s	like	IntelliJ,	Eclipse,	etc.)

• SonarQube	–	It’s	a	server,	given	a	repo	it	finds	the	list	of	code	smells



ChatGPT for	refactoring	– Just	a	try!

36

Feel	free	to	use	but	with:



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

