Code Metrics

CS6.401 Software Engineering

Dr. Karthik Vaidhyanathan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

» P

o I &N

s S et
ey s B RN
e

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

HYDERABAD

Co Jth A2, @’m&wiy Yes e Cenfve

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Can some metrics be used to I
aid refactoring?

Code Complexity

The ratio of time spent reading versus writing is well over 10 to 1
--Robert C Martin

* Code over time has tendency to accumulate complexity
* (Greater or larger functionality should not have direct impact on code complexity

* Unnecessary complexity affects maintainability, time to market, understandability
and testability

How to manage it? — Start measuring it!!

Definition from: Norman Fenton, Software Measurement: A Necessary Scientific Basis, IEEE TSE, March 1994

What is measurement?

Measurement is defined as the process by which numbers or symbols are assigned to

attributes of entities in the real world in such a way as to describe them according to
clearly defined rules

Definition from: Norman Fenton, Software Measurement: A Necessary Scientific Basis, IEEE TSE, March 1994

What is measurement?

Entity: can be an Object (person) or event (journey)

Attribute: Feature of property of entity (height, blood pressure, etc.)

 Two types of measurement:
* Direct measurement: measurement of attribute

 Indirect measurement: Measurement of attribute involves measurement of
some other attribute (eg: BMI)

e Uses of measurement — Assessment or Prediction

Measurement In terms of Software

* Carried out throughout the software development process

 Measurements can be performed at different levels
* Completed Product (reliability, performance, etc.)
* Development Process (time, man hours, etc.)
* Source Code (lines of code, cyclomatic complexity, etc.)

* Source code metrics focus on measuring the source code of a system
* Allows to measure complexity of code
* Improve quality of code and thereby overall software
* Used for lot of applications (defect prediction, fault localizations, refactoring,
testing, etc.)

Commonly Used Source Code Metrics

Lines of Code (LOC)
» Easiest but effective indicator of complexity
* Small modules have low defect rates as opposed to large ones

Cyclomatic Complexity
* Developed by Thomas McCabe, 1976
» Allows to measure the complexity with respect to control flow of the code

Halstead Software Science Metrics
* Developed by Halstead, 1977
* Measures complexity in terms of the amount of information in source code

There are also object oriented metrics (Chidamber and Kemerer 1994,
Liand Henry 1993)

Cyclomatic Complexity

Count of the number of linearly independent paths in a program

Has a big impact on testing - test cases needs to cover the different paths

Uses the control flow graph, G of the given program - Approach based on graph theory

V(G)=e-n+2p

* e =Number of edges
 n = Number of nodes
* p = Connected components

In practice the number boils down to 1 (base) + number of decision points

Cyclomatic Complexity - Simple Example

00 Display Student

getName
public void displayDetails(Student student)
2 {
name = student.getName();
id = student.getId(); getld

System.out.println(name + " " + id);

Complexity =4 -5 + 2*1
=1

020,0:0:0

Cyclomatic Complexity - Another Example

00 Highlight PGSSP Students

getName
public void displayDetails(Student student)
2]
name = student.getName();

student.getId(); getld

type = student.getType();
if (type.equals("PGSSP"))

OO

{
System.out.println(name + " " = " 4+ "PGSSP")

} getType

else

{

System.out.println(name + " " + id);

} check

["o on type yesl

display
PGSSP

Complexity =8 - 8 + 2*1
=2

Halstead Software Science Metrics

Considers program as a collection of tokens
* Tokens: Operators or operands

* The metrics makes use of the occurrence of operators and operands in a program to
reason about complexity

nl -> number of distinct operators (+, -, *, while, for, (), {}, function calls, etc.)
n2 -> number of distinct operands (variables, method names, etc.)

N1 -> total number of occurrence of operators

N2 -> total number of occurrence of operands

* The above observations are combined to provide different metrics

Halstead Software Science Metrics

200 Simple Sum function

¢ Vocabulary; n= nl + nz public double calculateTotalCost(int iteml, int item2)
* Program length N =N1 + N2 2 T
° Volume’ V — Nlogz (n) 1 final double tax =

sum = numberl + number2:
& double totalCost = sum*tax;

return totalCost;

Operators (+, *, =, double, int,
final, return, {,}, ()), n1 =11

Operands (calculateTotalCost, item1, item2, sum, tax, numberl, number 2, totalCost) = 8
N1-(1,1,3,3,3,1,1,1,1,1,1) =17 n=19,N=28,V=28log(19) = 35.80

N2-(1,1,1,221,1,2)=11

12

Six 00 Metrics - Chidamber and Kemerer

* Weighted Methods per Class

Depth of Inheritance Tree

Number of Children of a Class

Coupling Between Object Classes
* Response for a Class
Lack of Cohesion on Methods

Image source: medium, google images

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

