
Code	Metrics
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanathan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Can	some	metrics	be	used	to	
aid	refactoring?	

2



Code	Complexity

3

The	ratio	of	time	spent	reading	versus	writing	is	well	over	10	to	1
	 	 	 	 	 	 	 	 --Robert	C	Martin

• Code	over	time	has	tendency	to	accumulate	complexity

• Greater	or	larger	functionality	should	not	have	direct	impact	on	code	complexity

• Unnecessary	complexity	affects	maintainability,	 time	 to	market,	understandability	
and	testability	

																																									How	to	manage	it?	–	Start	measuring	it!!

Definition	from:	Norman	Fenton,	Software	Measurement:	A	Necessary	Scientific	Basis,	IEEE	TSE,	March	1994



What	is	measurement?

4

Measurement	is	defined	as	the	process	by	which	numbers	or	symbols	are	assigned	to	
attributes	of	entities	in	the	real	world	in	such	a	way	as	to	describe	them	according	to	
clearly	defined	rules

Definition	from:	Norman	Fenton,	Software	Measurement:	A	Necessary	Scientific	Basis,	IEEE	TSE,	March	1994



What	is	measurement?

5

• Entity:	can	be	an	Object	(person)	or	event	(journey	)

• Attribute:	Feature	of	property	of	entity		(height,	blood	pressure,	etc.)

• 	Two	types	of	measurement:
• Direct	measurement:	measurement	of	attribute	
• Indirect	 measurement:	 Measurement	 of	 attribute	 involves	 measurement	 of	
some	other	attribute	(eg:	BMI)

• Uses	of	measurement	–	Assessment	or	Prediction



Measurement	In	terms	of	Software

6

• Carried	out	throughout	the	software	development	process

• Measurements	can	be	performed	at	different	levels
• Completed	Product	(	reliability,	performance,	etc.)
• Development	Process	(time,	man	hours,	etc.)
• Source	Code	(lines	of	code,	cyclomatic	complexity,	etc.)

• Source	code	metrics	focus	on	measuring	the	source	code	of	a	system
• Allows	to	measure	complexity	of	code
• Improve	quality	of	code	and	thereby	overall	software	

• Used	 for	 lot	 of	 applications	 (defect	 prediction,	 fault	 localizations,	 refactoring,	
testing,	etc.)



Commonly	Used	Source	Code	Metrics

7

• Lines	of	Code	(LOC)
• Easiest	but	effective	indicator	of	complexity
• Small	modules	have	low	defect	rates	as	opposed	to	large	ones

• Cyclomatic	Complexity	
• Developed	by	Thomas	McCabe,	1976
• Allows	to	measure	the	complexity	with	respect	to	control	flow	of	the	code

• Halstead	Software	Science	Metrics
• Developed	by	Halstead,	1977
• Measures	complexity	in	terms	of	the	amount	of	information	in	source	code

• There	are	also	object	oriented	metrics	(Chidamber	and	Kemerer	1994,	
						Li	and	Henry	1993)	



Cyclomatic	Complexity	

8

• Count	of	the	number	of	linearly	independent	paths	in	a	program		

• Has	a	big	impact	on	testing	–	test	cases	needs	to	cover	the	different	paths

• Uses	the	control	flow	graph,	G	of	the	given	program	–	Approach	based	on	graph	theory

• V(G)	=	e	–	n	+	2p

• e	=	Number	of	edges
• n	=	Number	of	nodes
• p	=	Connected	components

In	practice	the	number	boils	down	to	1	(base)	+	number	of	decision	points



Cyclomatic	Complexity	- Simple	Example

9

Complexity	=	4	–	5	+	2*1
	 										=	1



Cyclomatic	Complexity	- Another	Example

10

Complexity	=	8	–	8	+	2*1
	 										=	2



Halstead	Software	Science	Metrics

11

• Considers	program	as	a	collection	of	tokens

• Tokens:	Operators	or	operands

• The	metrics	makes	use	of	the	occurrence	of	operators	and	operands	in	a	program	to
					reason	about	complexity

					n1	->	number	of	distinct	operators	(+,	-,	*,	while,	for,		(),	{},	function	calls,	etc.)
					n2	->	number	of	distinct	operands	(variables,	method	names,	etc.)
					N1	->	total	number	of	occurrence	of	operators
					N2	->	total	number	of	occurrence	of	operands

• The	above	observations	are	combined	to	provide	different	metrics	



Halstead	Software	Science	Metrics

12

• Vocabulary,	n	=	n1	+	n2
• Program	length	N	=	N1	+	N2
• Volume,	V	=	Nlog2	(n)
….

Operators	(+,	*,	=,	double,	int,
final,	return,	{,	},	(,	)	),	n1	=	11

Operands	(calculateTotalCost,	item1,	item2,	sum,	tax,	number1,	number	2,	totalCost)	=	8

N1	-		(1,	1,	3,	3,	3,	1,	1,1,1,1,1)	=	17									n	=	19,	N	=	28,	V	=	28log(19)	=	35.80	

N2	–	(1,	1,	1,	2,	2,	1,	1,	2)	=	11



Six	OO	Metrics	– Chidamber and	Kemerer

13

• Weighted	Methods	per	Class	
• Depth	of	Inheritance	Tree	
• Number	of	Children	of	a	Class	
• Coupling	Between	Object	Classes	
• Response	for	a	Class
• Lack	of	Cohesion	on	Methods

Image	source:	medium,	google	images



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

