
Design	Patterns:	An	
Introduction

CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	 materials	 used	 in	 this	 presentation	 have	 been	 gathered/adapted/generated	
from	various	sources	as	well	as	based	on	my	own	experiences	and	knowledge
	 	 	 	 	 	 	 	 	--	Karthik	Vaidhyanathan

Sources:

1. Applying	UML	and	Patterns,	Craig	Larman
2. Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software by	Erich	

Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides

2



The	Journey

3



What	were	some	Lessons	
Learned	form	Unit	1?

4



Key	Design	Principles

5

• Abstraction

• Encapsulation

• Modularization

• Hierarchy	

So	all	we	need	to	follow	them	–	Problem	Solved!!

This Photo by Unknown Author is licensed under CC BY-NC

https://here2there.ca/principles-focused-evaluation/
https://creativecommons.org/licenses/by-nc/3.0/


6

Designing	that	too	OO	Systems	is	not	very	straightforward



Things	Improve	with	Practice

7

• Designs	should	be	reusable,	flexible	and	understandable	

• Very	difficult	to	get	it	right	the	first	time	–	Not	hard	though!!

• Experience	people	also	take	multiple	iterations

• Novice	find	it	even	more	difficult	to	get	their	head	around!

Experts	are	able	to	make	good	design….How?



Things	Improve	with	Practice

8

• Experts	tend	to	reuse	solution		that	have	worked	in	the	past!

• The	way	objects	are	 identified,	 relationships	are	established	becomes	recurring	
activity

• When	something	has	been	tried	and	worked	well,	why	not	use	it	again!!

• They	start	seeing	recurring	patterns	over	time

• What	if	this	experience	could	be	recorded	for	reuse?



GRASP

9



General	Responsibility	Assignment	Software	Patterns	or	Principles

10

• Information	Expert:	Who	gets	the	responsibility?
• Find	which	class	has	the	data	
• The	one	who	has	data	also	should	have	the	operations	to	perform	the	data

• Creator:	Who	gets	the	role	of	the	creator?
• Defines	guidelines	 for	which	class	should	be	 in	charge	of	 creating	objects	of	
other	type

• E.g.	Class	B	should	be	in	charge	of	creating	objects	of	A	if:
• B	contains	or	compositely	aggregates	A
• B	closely	uses	A
• B	has	inputs	to	construct	A
• B	records	A



General	Responsibility	Assignment	Software	Patterns	or	Principles

11

• Low	Coupling:	How	to	minimize	impact	of	change?
• Assign	responsibilities	such	that	to	reduce	coupling
• Given	two	alternatives,	chose	the	one	that	minimizes	coupling

• High	Cohesion:	How	to	keep	everything	together	in	one	object	to	better	manage	
and	to	minimize	coupling?
• Do	one	thing	and	do	it	very	well
• Give	one	end-to-end	responsibility	to	one	class
• Reduce	communication	



General	Responsibility	Assignment	Software	Patterns	or	Principles

12

• Polymorphism:	How	to	decouple	clients	from	different	ways	of	accomplishing	a	
single	task?
• Contributes	to	low	coupling
• Several	ways	to	accomplish	a	task	or	a	functionality
• Achieved	through	interfaces,	overloading	methods	of	super	classes

• Pure	Fabrication:	Whom	 to	 assign	 the	 responsibility	when	 it	 does	not	 fit	 into	
either	of	the	classes?
• Promotes	cohesion
• Sometimes	a	responsibility	needs	to	be	assigned	but	need	not	fit	well	into	a	class
• Create	a	new	class	(does	not	map	to	domain	object	for	handling	the	responsibility



General	Responsibility	Assignment	Software	Patterns	or	Principles

13

• Indirection:	How	 to	 ensure	 that	 one	 can	 communicate	 with	 another	 without	
knowing	each	other	well?
• Another	principle/pattern	to	reduce	coupling
• Introduce	a	new	class	between	two	classes	A	and	B
• Changes	in	A	or	B	doesn’t	affect	each	other.	The	intermediary	absorbs	the
					impact
• Introduces	a	class	as	opposed	to	protected	variation

• Protected	 Variation:	How	 to	 protect	 part	 of	 a	 class	 from	 changes	 in	 part	 of	
another	class?
• Related	to	ensuring	low	coupling
• Code	of	a	part	of	class	B	is	protected	from	changes	in	code	of	part	A
• Introduce	interface	around	the	unstable	part	of	the	codebase



General	Responsibility	Assignment	Software	Patterns	or	Principles

14

• Controller:		What	if	there	is	a	need	for	someone	to	control	the	responsibility	
between	classes?

• Kind	of	a	subtype	of		pure	fabrication
• Very	common	in	UI	applications	->	between	UI	and	the	backend
• Separate	concerns	clearly	between	two	classes	by	having	someone	in	middle
• Does	not	map	to	any	domain	object



Design	Patterns

15



Design	Patterns

16

Each	Pattern	describes	a	problem	which	occurs	over	and	over	again	in	our	
environment	and	then	describes	the	core	of	the	solution	to	that	problem,	in	such	a	
way	that	you	can	use	this	solution	a	million	times	over,	without	ever	doing	it	the	
same	way	twice																		 	 	 	 	 		--	Christopher	Alexander

Patterns	captures	{Context,	Problem,	Solution}

What	are	some	of	the	patterns	you	can	think	of?

Source: A Pattern Language, Christopher Alexander



Patterns	patterns	everywhere!

17

• We	have	a	natural	tendency	to	look	for	patterns	in	anything	and	everything
• Pattern	of	grades	for	courses
• Pattern	of	questions	in	question	papers
• Climate	patterns	(rainfall,	summer,	…)
• …

Roman	architecture Island	houses	in	Greece

Architectural	Patterns Color	Patterns Algorithmic	Patterns

Divide	and	conquer

Data	Patterns

Covid	cases	curve



What	about	Software?

18

Many	patterns	to	design	and	build	software	systems
• Architectural	Patterns	[Higher	Level]
• Design	Patterns	[Lower	level]

Patterns	for	extracting	objects	
And	classes
(Look	for	nouns,	verbs,	etc.)	

Patterns	for	structuring	
everything Patterns	for	distributing	functionality



Four	Elements	of	a	Pattern

19

• Pattern	Name:	Handle	to	describe	a	design	problem

• Problem:	When	to	apply	the	pattern,	preconditions,	special	relationships,	etc.

• Solution:	Elements	that	make	up	the	design,	relationships	and	collaborations
• Not	a	particular	solution	but	abstract	representation	with	potentials	

• Consequences:	Results	and	trade-off	of	applying	a	given	pattern
• Perform	cost-benefit	analysis



Design	Patterns	

20

• Principles,	relationships	and	techniques	for	creating	reusable	OO	design

• Identifies	participating	objects,	their	roles,	responsibilities	and	relationships

• Not	about	Linked	Lists,	hash	tables,	etc.
• The	are	low	level	structures	inside	classes

• Not	about	complex	domain	specific	design	or	design	of	subsystems
• Domain	specific	design	is	more	at	high	level	–	Architectural	level



Classification	of	Design	Patterns

21

• Mainly	divided	into	three	based	on	the	purpose	they	serve

• Creational,	Structural	and	Behavioral

• Each	category	has	a	purpose,	a	set	of	patterns	that	work	in	different	scope:
• Class	or	object	

• There	are	a	total	of	23	classic	patterns:	Gang	of	Four	(GOF)	patterns
• The	famous	book	Design	Patterns:	Elements	of	Reusable	Object-Oriented	
Software	by	Erich	Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides



Classification	of	Design	Patterns

22

• Creational
• Class	-		Defer	creation	to	subclasses
• Object	–	Defer	creation	to	another	object

• Structural
• Class	–	Structure	via	inheritance
• Object	–	Structure	via	Composition

• Behavioral
• Class	–	algorithms/control	via	inheritance
• Object	–	algorithms/control	via	object	groups



23

C	–	Scope	is	Class
O	–	Object	Scope



Describing	Patterns

24

• Pattern	Name	and	Classification
• Name	captures	essence	and	classification	the	category	it	tackles	
	

• Intent
• What	does	the	design	pattern	do?
• What	is	its	rationale	and	intent	–	What	problem	does	it	address?

• AKA	(Also	Known	As):	Other	known	names

• Motivation
• A	scenario	that	illustrates	the	problem	and	how	pattern	can	solve	it

• Applicability
• What	are	the	situation	in	which	the	pattern	can	be	applied	and	how	to	
recognize	them?



Describing	Patterns

25

• Structure
• Graphical	representation	of	the	pattern	in	UML	or	other	modeling	language

• Participants
• The	classes/objects	participating	and	their	responsibilities

• Collaborations	
• How	the	participants	collaborate	to	carry	out	their	responsibilities.

• Consequences
• How	well	does	the	pattern	support	its	objectives?
• What	are	the	trade-offs	and	results	of	using	the	pattern?
• What	part	can	be	varied	independently?



Describing	Patterns

26

• Implementations	and	Sample	Code
• Code	fragments	to	illustrate	implementation	in	OOP	language	of	choice

• Known	Uses	
• Examples	of	patterns	in	real	systems

• Related	Patterns	
• What	are	the	patterns	closely	related	to	this	one?
• What	are	the	key	differences?
• What	other	patterns	with	which	this	can	be	used?



Some	Principles

27



Program	to	Interface	Not	Implementation

28

• One	of	the	most	important	OO	Design	Principles

• “Program	to	interface”		refers	to	the	idea	of	ensuring	loose	coupling
• Does	not	only	mean	the	“Interface”?

• Very	useful	when	lot	of	changes	are	expected	

• Create	an	interface,	define	methods	->	create	classes	that	implements	them

• Allows	external	objects	to	easily	communicate

• Maintainability	and	flexibility	increases



Favor	Object	Composition	over	Class	Inheritance

29

• Two	most	common	techniques:	Inheritance	and	Composition

• Class	inheritance:	White-box	reuse
• Internals	of	parent	class	are	visible	to	child	class
• Defined	statically	at	compile	time
• Sub	class	can	override	methods	of	parent	class

• Inheritance	is	not	always	the	go	to	solution	-	”breaks	encapsulation”

• Composition:	Black-box	reuse
• Objects	acquiring	references	to	other	objects
• Defined	dynamically	at	run	time
• Encapsulation	is	not	broken	–	Objects	are	accessed	through	interfaces
• Get	what	is	needed	by	assembling	and	not	by	creating		



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

