
Design	Patterns
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	 materials	 used	 in	 this	 presentation	 have	 been	 gathered/adapted/generated	
from	various	sources	as	well	as	based	on	my	own	experiences	and	knowledge
	 	 	 	 	 	 	 	 	--	Karthik	Vaidhyanathan

Sources:

1. Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software by	Erich	
Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides

2. Head	first	Design	Patterns,	Second	Edition,	Eric	Freeman	and	Elisabeth	Robson	

2



Being	an	Observer!	-	The	
Observer	Pattern
[Behavioral]

3



Meet	the	Observer	Pattern!

4

• Subscriber	chooses	the	(channel)	publisher	by	pressing	on	subscribe	button

• The	channel	who	is	posting	(Publisher)	delivers	only	to	its	subscribers

• publisher	has	to	maintain	a	list	of	subscribers	(channel	subscribers)	



Meet	the	Observer	Pattern:	Motivation	

5Can	we	push	the	data	to	all	clients	as	soon	a	s	it	arrives?



Meet	the	Observer	Pattern

6

• What	if	we	had	the	sensor	data	to	be	publishers?

• What	if	the	clients	just	become	subscribers?

• Every	time	data	comes,	all	the	subscribers	are	notified

• Publishers	and	subscribers	can	be	decoupled

• Adding	new	clients	also	is	just	same	as	adding	a	new	subscriber



Observer	Pattern:	Documentation	

7

Intent

Defining	a	one-to-many	dependency	between	objects
Change	in	object	notifies	all	dependent	objects

Also	Known	As:		Dependents,	Publish-subscribe

Motivation

• Maintaining	consistency	between	objects
• Reduce	tight	coupling	and	increase	reusability
• Two	key	objects:	Subject	and	Observer

Example:	Presentation	components	and	application	data



Observer	Pattern:	Documentation	

8

Applicability

• When	abstraction	has	two	aspects	–	One	dependent	on	the	other	and	separation	
promotes	reusability
• Eg:	Think	of	having	just	one	class,	Display	instead	of	mobile	and	web

• When	a	change	in	one	object	requires	changing	others	[Not	clear	how	many!]
• When	object	should	notify	others	without	assuming	about	the	objects	[reduce	
coupling]	



Observer	Pattern:	Documentation	

9

Structure

Image	source:	Gang	of	four	book



Observer	Pattern:	Documentation	

10

Participants
Subject	(IoTInterface)
• Knows	its	observers	–	Many	observers	per	subject
• Provides	interface	for	attaching	and	detaching	observer	objects

Observer	(DataSubscribers)
• Defines	an	update	interface	for	objects	that	should	be	notified	

Concrete	Subject	(RfidPublisher)
• The	key	subject	that	contains	the	state	information
• Sends	a	notification	to	its	observers	when	state	change	happens

Concrete	Observer	(MobileSubscriber)
• Maintains	reference	to	concrete	subject	object
• Implements	observer	update	interface	

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Observer	Pattern:	Documentation	

11

Consequences

• Abstract	coupling	between	Subject	and	Observer
• Subject	doesn’t	know	the	concrete	class	of	any	observer
• The	coupling	is	as	minimal	as	possible

• Support	for	broadcast	communication
• Subject	doesn’t	care	about	number	of	observers
• The	notifications	are	automatically	sent	as	broadcast	to	all	interested	

• Unexpected	updates
• Unintended	updates	on	subject	may	cause	cascade	of	updates	on	observers
• Often	simple	update	notification	may	not	provide	enough	changes	on	state	
changes	of	subject	



Observer	Pattern:	Documentation	

12

Implementation

Check	the	source	code	given	along:	IoTObserver
	
	



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

