Design Patterns

CS6.401 Software Engineering

Co 1[%;\1 A2, @'mew'y Yes e Cenfve

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

o &
. S R
B et
R ol S Al RN
'# RYE | O e
N H

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY
HYDERABAD

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generated
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides

2. Head first Design Patterns, Second Edition, Eric Freeman and Elisabeth Robson

Let’'s build a factory to create
objects — Factory Pattern!
|Creational]

Meet the Factory Pattern!

A M e
HrETE

0 P

Factory of CB Cars

CAR DEALER
-

Need New cars

— Create XZ Cars =>
of XZ

Distributor Factory

Factory of PZ Cars

A distributor may want multiple cars- Just order to the vendor!!

Meet the Factory Pattern: Motivation

@ Course System

|:| Regular Courses

Enroll function may be different in each! We may want to add more in future - Elective

Meet the Factory Pattern

What if we want to easily add new products (objects of new type)?
What if you don’t want to change too many places when something is added?
Decoupling clients from knowing actual products (program for interface)

Encapsulate object creation (encapsulate what varies) E I

Factory Pattern: Documentation

Intent

Defining an interface for creating object but let subclasses decide which class to be
instantiated

4 N\
Also Known As: Virtual Constructor

Motivation

 Not clear which of the subclasses of the parent class to access - /
* Encapsulate the functionality required to select a class to method
* Two key objects: Factory (Creator) and Product

Factory Pattern: Documentation

Applicability
* A class can’t anticipate the class of objects it must create
* C(lass wants subclasses to specify the object it creates

* (lasses delegate responsibility to one of the several helper classes and which is
the delegate needs to be localized

4 b

Factory Pattern: Documentation

Structure

Product

VAN

ConcreteProduct

Image source: Gang of four book

Creator

FactoryMethod()
AnOperation() o

product = FactoryMethod() ﬁ

A

- ., . -

ConcreteCreator

FactoryMethod() ©-

return new ConcreteProduct %

Factory Pattern: Documentation

Participants
Product (Systems Interface)
* Defines the interface of objects the factory method creates

Concrete Product (RegularSystemsCourse)
* Implements the product interface

Creator (CourseFactory)
* Declares the factory method which returns object of type product
» (Calls factory method to create the product

Concrete Creator (RegularCourseFactory)
* Overrides the factory method to return instance of concrete product

10

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Factory Pattern: Documentation

Consequences

Eliminates the need to bind application-specific classes into code
* Code only deals with the product interface
* Any number of concrete products can be added

Provides hooks for subclasses
* Creating objects inside a class is more flexible than direct creation

Connects parallel hierarchies
* C(lass can delegate some of its responsibilities to another class
* Those can also use the abstract factory

Too much of subclassing can happen
* Code can become too complicated
* Becomes more easier to introduce factory to existing hierarchy

Factory Pattern: Documentation

Implementation

Check the source code given along: CourseFactory

12

We can always use an
adapter: Adapter Pattern!
|Structural]

Meet the Adapter Pattern!

Indian

European

- .‘)\\ ¥
=)
=
=
(€ &
“ A @ s B

‘ ' L ' Universal adapter

Meet the Adapter Pattern — A Scenario

Cameras

Video data format
Not supported in node data manager

Send data

Node Data
Manager

Sensor Class

Why don’t we write an adapter that can transform?

15

Meet the Adapter Pattern

 What if the interfaces are incompatible?
 What if we can have an adapter in between that can transform the new format?
« Adapter wraps the complexity of conversion

* Supports collaboration of different types of object

* Two-way adapter can also be made

16

This Photo by Unknown Author is licensed under CC BY-SA

http://android.stackexchange.com/questions/67702/must-a-usb-otg-adapter-be-used-to-connect-a-dac-amp-to-an-android-or-can-i-use-a
https://creativecommons.org/licenses/by-sa/3.0/

Adapter Pattern: Documentation

Intent
Convert the interface of a class into another interface expected by the clients

Also Known As: Wrapper

Motivation

* Not every time there are compatible interfaces
* Promote reusability
» Three key objects: Client, Target, Adapter L, i

Example: Adapter to transform data [Think of legacy class that accepts only
certain formats]

1/

Adapter Pattern: Documentation

Applicability

* There is an existing class but its interface does not match the one needed

* Creation of reusable class that can work with unforeseen classes

* There are several existing subclasses but impractical to adapt their interface by

subclassing everyone

* Use object adapter [The one we use here] - Uses composition
* (lass adapter relies on multiple inheritance

Adapter Pattern: Documentation

Structure

Client

Image source: Gang of four book

Target — Adaptee
Request() SpecificRequest()
adaptee
Adapter

Request() O

adaptee—>SpecificRequest() %

19

Adapter Pattern: Documentation

Participants
Target (NodeData)
* Defines the domain specific interfaces that the client uses

Client (NodeManager)
* Collaborates with objects conforming to their target interfaces

Adaptee (VideoNode)
* Defines an existing interface that needs adapting

Adapter (VideoNodeAdapter)
* Adapts the interface of the Adaptee to the Target interface

20

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Adapter Pattern: Documentation

Consequences

» Single adapter can be used for many adapteees
* Can implement different functionalities to work with many adaptees
* New types of adapter can also be easily introduced

* Provides good separation of concerns
* Keep the logic for conversion in one
* No need to change at multiple places

* Overall complexity may increase - How much of adaptation is done?
* (Canitbe done in a simpler manner on the Adaptee or Target?

Adapter Pattern: Documentation

Implementation

Check the source code given along: [oTAdapter

22

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

