
Design	Patterns
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	 materials	 used	 in	 this	 presentation	 have	 been	 gathered/adapted/generated	
from	various	sources	as	well	as	based	on	my	own	experiences	and	knowledge
	 	 	 	 	 	 	 	 	--	Karthik	Vaidhyanathan

Sources:

1. Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software by	Erich	
Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides

2. Head	first	Design	Patterns,	Second	Edition,	Eric	Freeman	and	Elisabeth	Robson	

2



Let’s	build	a	factory	to	create	
objects	–	Factory	Pattern!

[Creational]

3



Meet	the	Factory	Pattern!

4A	distributor	may	want	multiple	cars–	Just	order	to	the	vendor!!



Meet	the	Factory	Pattern:	Motivation	

5Enroll	function	may	be	different	in	each!	We	may	want	to	add	more	in	future	-	Elective



Meet	the	Factory	Pattern

6

• What	if	we	want	to	easily	add	new	products	(objects	of	new	type)?	

• What	if	you	don’t	want	to	change	too	many	places	when	something	is	added?

• Decoupling	clients	from	knowing	actual	products	(program	for	interface)

• Encapsulate	object	creation	(encapsulate	what	varies)



Factory	Pattern:	Documentation	

7

Intent

Defining	an	interface	for	creating	object	but	let	subclasses	decide	which	class	to	be	
instantiated	

Also	Known	As:		Virtual	Constructor

Motivation

• Not	clear	which	of	the	subclasses	of	the	parent	class	to	access
• Encapsulate	the	functionality	required	to	select	a	class	to	method
• Two	key	objects:	Factory	(Creator)	and	Product



Factory	Pattern:	Documentation	

8

Applicability

• A	class	can’t	anticipate	the	class	of	objects	it	must	create

• Class	wants	subclasses	to	specify	the	object	it	creates

• Classes	delegate	responsibility	to	one	of	the	several	helper	classes	and	which	is	
the	delegate	needs	to	be	localized		



Factory	Pattern:	Documentation	

9

Structure

Image	source:	Gang	of	four	book



Factory	Pattern:	Documentation	

10

Participants
Product	(Systems	Interface)
• Defines	the	interface	of	objects	the	factory	method	creates

Concrete	Product	(RegularSystemsCourse)
• Implements	the	product	interface

Creator	(CourseFactory)
• Declares	the	factory	method	which	returns	object	of	type	product
• Calls	factory	method	to	create	the	product

Concrete	Creator	(RegularCourseFactory)
• Overrides	the	factory	method	to	return	instance	of	concrete	product

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Factory	Pattern:	Documentation	

11

Consequences

• Eliminates	the	need	to	bind	application-specific	classes	into	code
• Code	only	deals	with	the	product	interface
• Any	number	of	concrete	products	can	be	added

• Provides	hooks	for	subclasses
• Creating	objects	inside	a	class	is	more	flexible	than	direct	creation

• Connects	parallel	hierarchies
• Class	can	delegate	some	of	its	responsibilities	to	another	class
• Those	can	also	use	the	abstract	factory

• Too	much	of	subclassing	can	happen
• Code	can	become	too	complicated
• Becomes	more	easier	to	introduce	factory	to	existing	hierarchy



Factory	Pattern:	Documentation	

12

Implementation

Check	the	source	code	given	along:	CourseFactory
	
	



We	can	always	use	an	
adapter:	Adapter	Pattern!

[Structural]

13



Meet	the	Adapter	Pattern!

14

Universal	adapter

Indian	 European



Meet	the	Adapter	Pattern	–	A	Scenario

15Why	don’t	we	write	an	adapter	that	can	transform?



Meet	the	Adapter	Pattern

16

• What	if	the	interfaces	are	incompatible?

• What	if	we	can	have	an	adapter	in	between	that	can	transform	the	new	format?

• Adapter	wraps	the	complexity	of	conversion	

• Supports	collaboration	of	different	types	of	object

• Two-way	adapter	can	also	be	made

This Photo by Unknown Author is licensed under CC BY-SA

http://android.stackexchange.com/questions/67702/must-a-usb-otg-adapter-be-used-to-connect-a-dac-amp-to-an-android-or-can-i-use-a
https://creativecommons.org/licenses/by-sa/3.0/


Adapter	Pattern:	Documentation	

17

Intent

Convert	the	interface	of	a	class	into	another	interface	expected	by	the	clients

Also	Known	As:	Wrapper

Motivation

• Not	every	time	there	are	compatible	interfaces
• Promote	reusability
• Three	key	objects:	Client,	Target,	Adapter

Example:	Adapter	to	transform	data	[Think	of	legacy	class	that	accepts	only	
certain	formats]



Adapter	Pattern:	Documentation	

18

Applicability

• There	is	an	existing	class	but	its	interface	does	not	match	the	one	needed

• Creation	of	reusable	class	that	can	work	with	unforeseen	classes

• There	are	several	existing	subclasses	but	impractical	to	adapt	their	interface	by	
subclassing	everyone
• Use	object	adapter	[The	one	we	use	here]	–	Uses	composition
• Class	adapter	relies	on	multiple	inheritance



Adapter	Pattern:	Documentation	

19

Structure

Image	source:	Gang	of	four	book



Adapter	Pattern:	Documentation	

20

Participants
Target	(NodeData)
• Defines	the	domain	specific	interfaces	that	the	client	uses

Client	(NodeManager)
• Collaborates	with	objects	conforming	to	their	target	interfaces

Adaptee	(VideoNode)
• Defines	an	existing	interface	that	needs	adapting

Adapter	(VideoNodeAdapter)
• Adapts	the	interface	of	the	Adaptee	to	the	Target	interface

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Adapter	Pattern:	Documentation	

21

Consequences

• Single	adapter	can	be	used	for	many	adapteees
• Can	implement	different	functionalities	to	work	with	many	adaptees
• New	types	of	adapter	can	also	be	easily	introduced

• Provides	good	separation	of	concerns
• Keep	the	logic	for	conversion	in	one
• No	need	to	change	at	multiple	places	

• Overall	complexity	may	increase	–	How	much	of	adaptation	is	done?
• Can	it	be	done	in	a	simpler	manner	on	the	Adaptee	or	Target?



Adapter	Pattern:	Documentation	

22

Implementation

Check	the	source	code	given	along:	IoTAdapter
	
	



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

