Design Patterns

CS6.401 Software Engineering

Co 1[%;\1 A2, @'mew'y Yes e Cenfve

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

o &
. S R
B et
R ol S Al RN
'# RYE | O e
N H

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY
HYDERABAD

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generated
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Design Patterns: Elements of Reusable Object-Oriented Software by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides

2. Head first Design Patterns, Second Edition, Eric Freeman and Elisabeth Robson

You can give a command:
Command Pattern
|Behavioral]

Meet the Command Pattern!

Customer 1

4)

Cook Margherita
Cook Dosa
Cook Noodles

o /

Order list

=== 2 D0S35 w=m

Customer 2

Waitress

Customer 3

Meet the Command Pattern - A Scenario

----------- SWitCh 0] A RLLLLLLLLD . """‘StartTV and..---)
get it ready
' = |ncrease Volume ==
Trigger 3
Vol change

----------- SWitCh off ---------)
Trigger proces
for turning off

User

Remote

Television

Should remote know exactly how the TV work step by step?

Meet the Command Pattern

 What if sender need not have to worry about receiver’s internal implementation?

« What if some commands needs to be scheduled and executed in order at a later
time?

* Sender needs to be decoupled from a receiver

* Encapsulates everything required to perform an action
* Execution of action can happen independently

Command Pattern: Documentation

Intent

Encapsulate a request as an object, allowing parameterization of clients with
requests, log or queue request and support undoable operations.

Also Known As: Action, Transaction

Motivation

* Sometimes its necessary to request to objects without
details about operation
* Objects can be stored and passed around - \-

/

» Five key objects: Client, Command, Concrete Command, Invoker and Receiver

Example: Ul kits [Think about if you want to develop a button class]

Command Pattern: Documentation

Applicability

Parameterize objects by an action to perform - Callbacks in procedural
» Specify, queue, execute request at different times

* Support undo operations — Think of editors, games [Add another operation in
command interface]

* Supportlogging changes - Manage crashes

* Sometimes an operation may be composed of primitive operations

Command Pattern: Documentation

Structure

Client Invoker [» Command

Execute()

receiver

Action() <t ConcreteCommand

—a| Receiver

Execute() O-----~--- - - =1 receiver->Action();)

e ww W e MR AA GE Em e em em W W em e

state

Image source: Gang of four book

Command Pattern: Documentation

Participants
Command (Command.java)
* Interface for executing an operation

ConcreteCommand (TVOnCommand, TVOffCommand,..)
* Binding between receiver object and action
* Implements the execute by invoking operations on receiver

Receiver (Television)
* Knows how to perform the operations associated with a request

Client (RemoteControlDemo)
e Create ConcreteCommand object and sets its receiver

Invoker (RemoteControl)
* (Calls command to execute a request 10

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Command Pattern: Documentation

Consequences

Decoupling client and receiver
* Decouples invoke operation from the one that knows how to perform it

Commands as first-class objects
 Command can be manipulated and extended like any other object

Composite commands can be formed
 Commands can be composed to form a larger command

Code complexity may increase
* Not every time this is needed
* Introduction of new layer between senders and receivers

Command Pattern: Documentation

Implementation

Check the source code given along: RemoteControlCommand

12

We can pass on
responsibilities: Chain of
Responsibilities!
|Behavioral]

Meet the Chain of Responsibility Pattern!

Lets redo the parts
to fix the issue

.)
. —
e et ﬁ s =
== forwards to & = forwards to - \
t v
‘ AN

Some issue. Let me
Contact support

Not an L1 issue,
forward
to L2

ﬂ/lajor changes needed
Forward to L3

= reports to ¥

- e A s S AR - a

Customer L1 Team L2 Team L3 Team

14

Meet the Chain of Responsibility Pattern - Motivation

TA Application Scenario

x
'S

Instructor Advisor TA Chair

- A

@i

[
@ — forward =—p

TA ApplicationClient Academic Office

How do you implement this ?

15

Meet the Chain of Responsibility Pattern

 What if one single request requires processing by multiple objects?

 What if the sender needs to be decoupled from receiver in the form of set of
intermediatory objects?

* Sometimes single task may require multiple steps to process

* Each step in the process may decide if it needs to be further processed or not

Chain of Responsibility Pattern: Documentation

Intent

Avoid coupling the sender of a request to its receiver by giving more than one object a
chance top handle the request. Chain the receiving objects and pass the request along
the chain until one handles it

Also Known As: CoR, Chain of Command ~ i

Motivation

* Request may have to be passed along a chain
* Senders and receivers need decoupling \- J/
» Key objects: Handler, ConcereteHandler and Client

Example: Payment process in an e-commerce system

CoR Pattern: Documentation

Applicability

* More than one object may handle a request and handler isn't known apriori

* [ssue request to one object without specifying the receiver

* The set of objects that can handle a request should be specified dynamically

CoR Pattern: Documentation

Structure

Client

|
|

Image source: Gang of four book

» Handler

SUCCessor

HandleRequest()

A

ConcreteHandler1

HandleRequest()

ConcreteHandler2

HandleRequest()

19

CoR Pattern: Documentation

Participants

Handler (ApplicationHandler)
* Defines an interface for handling requests

ConcreteHandler (InstructorHandler)
 Handles requests its responsible for
« (Can access its successor

Client (StudentDemo)
 Initiates the request to a ConcreteHandler object on the chain

20

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

CoR Pattern: Documentation

Consequences

* Reduced Coupling
* Object does not need to worry about which other object handles request
* Simplifies object interactions

* Flexible assignment of responsibilities
* Flexible distribution of responsibilities among objects
* Responsibilities of each handler can be changed at run time (chain can be increased)

* Receiptisn’'t guaranteed
* Request has no explicit receiver - No guarantee of handling
* Request can go unhandled when chain is not configured properly

CoR Pattern: Documentation

Implementation

Check the source code given along: TA-ApprovalChainOfResponsibility

22

How about Composing!:
Meet the Composite Pattern
|Structural]

Meet the Composite Pattern!

O Folder
-
|-

Disk I

Folder

P

File

How to get the total size?

(M)

File

O

File

0

File

(]

File

Meet the Composite Pattern

 What if a large component is composed of smaller components?
 What if the client need not worry about the complex hierarchy?
 What if the composition tree needs to be parsed recursively?
* Composition may contain primitives and larger components

* Have everyone in the tree share some common method alB—

BiF=

25

Composite Pattern: Documentation
Intent

Compose objects into tree structures to represent part-whole hierarchies. Composite
lets client treat objects and compositions uniformly

Also Known As: Object Tree

Motivation

* Enable client to treat primitives and containers identically
* Promotes extensibility - Introduce new types
* Four key objects: Component, leaf, composite and client

Example: Disk system has folders and files. Each folder has files

Composite Pattern: Documentation

Applicability

* Represent part-whole hierarchies of objects
* Recurse through the tree in a more controlled manner

* Clients should be unaware of the differences
* Ignore difference between composition of objects and individual objects
* All objects in the composite structure are treated uniformly

Composite Pattern: Documentation

Structure

Client

» Component

o

Operation()

GelChild(int)

Add{Component)
Remove(Component)

A

Leaf

Operation()

Image source: Gang of four book

Composite

children
ko—|

Operation() ©~=-----
Add(Component)
Remove(Component)
GetChild(int)

forall g in children
g.Operation();

28

Composite Pattern: Documentation

Participants

Component (FileSystem)

* Declares the interface for objects in the composition

* Implements default behavior - also declares interface to access child components

Leaf (File)
* Leaf objects in the composition — No children
* Behaviour of primitive objects is defined

Composite (Folder)
* Defines behavior for components with children
» Stores child components

Client (FileSystemDemo)
* Manipulates objects in the composition through component interface

29

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/

Composite Pattern: Documentation

Consequences

Class hierarchies with primitive and composite objects
* Primitive objects can be further composed
* (Client can work with both primitive and composite in same way

Enhance client-side simplicity
* (Clients are not aware if an object is primitive or composite
* No case statement or if conditions needed

Add new components easily
* New composite or sub-classes can be added to tree without affecting client

Design can be too general - Also it sometimes can be forcefit
* Restricting components of a composite is hard

Composite Pattern: Documentation

Implementation

Check the source code given along: FileSystemComposite

31

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

