
Design	Patterns
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	 materials	 used	 in	 this	 presentation	 have	 been	 gathered/adapted/generated	
from	various	sources	as	well	as	based	on	my	own	experiences	and	knowledge
	 	 	 	 	 	 	 	 	--	Karthik	Vaidhyanathan

Sources:

1. Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software by	Erich	
Gamma,	Richard	Helm,	Ralph	Johnson	and	John	Vlissides

2. Head	first	Design	Patterns,	Second	Edition,	Eric	Freeman	and	Elisabeth	Robson	

2



You	can	give	a	command:	
Command	Pattern
[Behavioral]

3



Meet	the	Command	Pattern!

4



Meet	the	Command	Pattern	–	A	Scenario

5
Should	remote	know	exactly	how	the	TV	work	step	by	step?



Meet	the	Command	Pattern

6

• What	if	sender	need	not	have	to	worry	about	receiver’s	internal	implementation?

• What	if	some	commands	needs	to	be	scheduled	and	executed	in	order	at	a	later	
time?

• Sender	needs	to	be	decoupled	from	a	receiver

• Encapsulates	everything	required	to	perform	an	action
• Execution	of	action	can	happen	independently



Command	Pattern:	Documentation	

7

Intent

Encapsulate	a	request	as	an	object,	allowing	parameterization	of	clients	with	
requests,	log	or	queue	request	and	support	undoable	operations.

Also	Known	As:	Action,	Transaction	

Motivation

• Sometimes	its	necessary	to	request	to	objects	without	
details	about	operation	
• Objects	can	be	stored	and	passed	around	-
• Five	key	objects:	Client,	Command,	Concrete	Command,	Invoker	and	Receiver

Example:	UI	kits	[Think	about	if	you	want	to	develop	a	button	class]



Command	Pattern:	Documentation	

8

Applicability

• Parameterize	objects	by	an	action	to	perform	–	Callbacks	in	procedural

• Specify,	queue,	execute	request	at	different	times

• Support	undo	operations	–	Think	of	editors,	games	[Add	another	operation	in	
command	interface]

• Support	logging	changes	–	Manage	crashes	

• Sometimes	an	operation	may	be	composed	of	primitive	operations



Command	Pattern:	Documentation	

9

Structure

Image	source:	Gang	of	four	book



Command	Pattern:	Documentation	

10

Participants
Command	(Command.java)
• Interface	for	executing	an	operation

ConcreteCommand	(TVOnCommand,	TVOffCommand,..)
• Binding	between	receiver	object	and	action
• Implements	the	execute	by	invoking	operations	on	receiver	

Receiver	(Television)
• Knows	how	to	perform	the	operations	associated	with	a	request

Client	(RemoteControlDemo)
• Create	ConcreteCommand	object	and	sets	its	receiver	

Invoker	(RemoteControl)
• Calls	command	to	execute	a	request

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Command	Pattern:	Documentation	

11

Consequences

• Decoupling	client	and	receiver	
• Decouples	invoke	operation	from	the	one	that	knows	how	to	perform	it

• Commands	as	first-class	objects	
• Command	can	be	manipulated	and	extended	like	any	other	object		

• Composite	commands	can	be	formed
• Commands	can	be	composed	to	form	a	larger	command

• Code	complexity	may	increase
• Not	every	time	this	is	needed	
• Introduction	of	new	layer	between	senders	and	receivers	



Command	Pattern:	Documentation	

12

Implementation

Check	the	source	code	given	along:	RemoteControlCommand
	
	



We	can	pass	on	
responsibilities:	Chain	of	

Responsibilities!
[Behavioral]

13



Meet	the	Chain	of	Responsibility	Pattern!

14



Meet	the	Chain	of	Responsibility	Pattern	-	Motivation

15

TA	Application	Scenario

How	do	you	implement	this	?



Meet	the	Chain	of	Responsibility	Pattern

16

• What	if	one	single	request	requires	processing	by	multiple	objects?

• What	if	the	sender	needs	to	be	decoupled	from	receiver	in	the	form	of	set	of	
					intermediatory	objects?

• Sometimes	single	task	may	require	multiple	steps	to	process

• Each	step	in	the	process	may	decide	if	it	needs	to	be	further	processed	or	not



Chain	of	Responsibility	Pattern:	Documentation	

17

Intent

Avoid	coupling	the	sender	of	a	request		to	its	receiver	by	giving	more	than	one	object	a	
chance	top	handle	the	request.	Chain	the	receiving	objects	and	pass	the	request	along	
the	chain	until	one	handles	it

Also	Known	As:	CoR,	Chain	of	Command

Motivation

• Request	may	have	to	be	passed	along	a	chain
• Senders	and	receivers	need	decoupling	
• Key	objects:	Handler,	ConcereteHandler	and	Client

Example:	Payment	process	in	an	e-commerce	system



CoR	Pattern:	Documentation	

18

Applicability

• More	than	one	object	may	handle	a	request	and	handler	isn’t	known	apriori

• Issue	request	to	one	object	without	specifying	the	receiver

• The	set	of	objects	that	can	handle	a	request	should	be	specified	dynamically



CoR	Pattern:	Documentation	

19

Structure

Image	source:	Gang	of	four	book



CoR	Pattern:	Documentation	

20

Participants

Handler	(ApplicationHandler)
• Defines	an	interface	for	handling	requests

ConcreteHandler	(InstructorHandler)
• Handles	requests	its	responsible	for
• Can	access	its	successor

Client	(StudentDemo)
• Initiates	the	request	to	a	ConcreteHandler	object	on	the	chain

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


CoR	Pattern:	Documentation	

21

Consequences

• Reduced	Coupling
• Object	does	not	need	to	worry	about	which	other	object	handles	request
• Simplifies	object	interactions	

• Flexible	assignment	of	responsibilities	
• Flexible	distribution	of	responsibilities	among	objects
• Responsibilities	of	each	handler	can	be	changed	at	run	time	(chain	can	be	increased)

• Receipt	isn’t	guaranteed	
• Request	has	no	explicit	receiver	–	No	guarantee	of	handling
• Request	can	go	unhandled	when	chain	is	not	configured	properly



CoR	Pattern:	Documentation	

22

Implementation

Check	the	source	code	given	along:	TA-ApprovalChainOfResponsibility
	
	



How	about	Composing!:	
Meet	the	Composite	Pattern

[Structural]

23



Meet	the	Composite	Pattern!

24How	to	get	the	total	size?



Meet	the	Composite	Pattern

25

• What	if	a	large	component	is	composed	of	smaller	components?

• What	if	the	client	need	not	worry	about	the	complex	hierarchy?

• What	if	the	composition	tree	needs	to	be	parsed	recursively?

• Composition	may	contain	primitives	and	larger	components

• Have	everyone	in	the	tree	share	some	common	method	



Composite	Pattern:	Documentation	

26

Intent

Compose	objects	into	tree	structures	to	represent	part-whole	hierarchies.	Composite	
lets	client	treat	objects	and	compositions	uniformly	

Also	Known	As:	Object	Tree

Motivation

• Enable	client	to	treat	primitives	and	containers	identically
• Promotes	extensibility	–	Introduce	new	types
• Four	key	objects:	Component,	leaf,	composite	and	client

Example:	Disk	system	has	folders	and	files.	Each	folder	has	files



Composite	Pattern:	Documentation	

27

Applicability

• Represent	part-whole	hierarchies	of	objects	
• Recurse	through	the	tree	in	a	more	controlled	manner

• Clients	should	be	unaware	of	the	differences	
• Ignore	difference	between	composition	of	objects	and	individual	objects
• All	objects	in	the	composite	structure	are	treated	uniformly	



Composite	Pattern:	Documentation	

28

Structure

Image	source:	Gang	of	four	book



Composite	Pattern:	Documentation	

29

Participants
Component	(FileSystem)
• Declares	the	interface	for	objects	in	the	composition
• Implements	default	behavior	–	also	declares	interface	to	access	child	components

Leaf	(File)
• Leaf	objects	in	the	composition	–	No	children
• Behaviour	of	primitive	objects	is	defined

Composite	(Folder)
• Defines	behavior	for	components	with	children
• Stores	child	components

Client	(FileSystemDemo)
• Manipulates	objects	in	the	composition	through	component	interface

This Photo by Unknown Author is licensed under CC BY

http://wagingnonviolence.org/feature/activists-need-realize-americans-actually-agree/
https://creativecommons.org/licenses/by/3.0/


Composite	Pattern:	Documentation	

30

Consequences

• Class	hierarchies	with	primitive	and	composite	objects
• Primitive	objects	can	be	further	composed	
• Client	can	work	with	both	primitive	and	composite	in	same	way

• Enhance	client-side	simplicity
• Clients	are	not	aware	if	an	object	is	primitive	or	composite
• No	case	statement	or	if	conditions	needed	

• Add	new	components	easily
• New	composite	or	sub-classes	can	be	added	to	tree	without	affecting	client

• Design	can	be	too	general	–	Also	it	sometimes	can	be	forcefit
• Restricting	components	of	a	composite	is	hard



Composite	Pattern:	Documentation	

31

Implementation

Check	the	source	code	given	along:	FileSystemComposite
	
	



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

