
Designing	
Microservices
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	materials	used	in	this	presentation	have	been	
gathered/adapted/generate	from	various	sources	as	well	as	based	on	my	
own	experiences	and	knowledge	--	Karthik	Vaidhyanathan

Sources:
1. Building	Microservices,	Sam	Newman,	2nd	edition
2. Various	sources	from	the	web	that	has	been	duly	credited	in	the	

respective	slide



Microservices:	Quick	Recap



Moving	Towards	Microservices

1990 2000 2010



Microservices:	What	does	it	Mean?

“Small	autonomous	services	that	work	together”		--	Sam	Newman

“It	is	an	approach	to	developing	a	single	application	as	a	suite	of	small	services,	each	
running	in	its	own	process	and	communicating	with	lightweight	mechanisms,	often	an	
HTTP	resource	API”	 --	Martin	Fowler



Microservices:	What	does	it	Mean?

Monolithic	Version Microservices	Version



Microservices:	Key	Advantages

Scaling	is	Easy

• Scale	only	the	required	microservices
• Adding	a	new	feature	can	be	just	adding	one	another	microservice

Heterogeneity

• Each	microservice	can	be	developed	in	different	technologies
• Experimenting	with	new	technology	is	easy

Resilience

• Only	specific	microservices	goes	down
• Grouping	microservices	as	critical	and	non-critical	can	be	done	to	add	more	
resilience



Microservices:	Key	Advantages

Organizational	Alignment

• Easily	distribute	teams	around	microservices	-	eg:	Amazon	2	pizza	rule
• Minimize	people	working	on	one	less	codebase 	

Composability

• Easily	compose	microservices	to	get	new	functionality

Replaceability

• Cost	of	replacement	is	small	-	should	not	take	more	than	2	weeks
• Imagine	replacing	a	25	year	old	legacy	system	!!

Ease	of	Deployment

• Check	and	rollback	easily
• Continuous	integration	and	deployment	is	easier	-	DevOps!!!



How	to	identify	
Microservices?	–	Lets	go	

back	to	NdR	Case



NdR	Case	Study																																																																																				

https://www.streetscience.it

https://www.streetscience.it/


NdR	Case	Study

Goal:	Develop	a	microservice	based	AI-powered	event	management	system	for	NdR

Features:	User	registration,	book	venues,	book	parking	lots,	provide	venue	and	
parking	lot	recommendation,	priority	booking	based	on	small	payment,	check	weather

Data	Sources:

• Parking	mats	at	entrances	and	exits	of	parking	lot	to	get	count	of	cars
• Handheld	RFID	readers	to	capture	the	count	of	people	entering	venue
• Cameras	at	different	locations	to	provide	real-time	video	feed
• People	counter	at	venue	exits	to	count	people	exiting	venue



Microservices	–	How	to	
Design?



How	to	design?

Follow	the	principle	of	bounded	contexts

• Identify	different	contexts	inside	the	main	domain	[organizational	boundary]
• Only	share	what	is	important	rest	remains	within	context

Ensure	loose	coupling

• Minimize	coupling	between	microservices
• Should	be	easy	to	change	and	deploy	one	without	affecting	others
• Each	microservice	needs	to	know	as	little	as	possible	about	others

Maintain	high	cohesion

• Bundle	one	end	to	end	feature	or	complete	part	of	it	inside	one	microservice
• Promotes	robustness	and	reliability
• One	change	should	never	require	change	in	10	different	places



What	are	the	contexts	in	
NdR?



Contexts	within	NdR



Hidden	and	Shared	Models



Hidden	and	Shared	Models



Shared	and	Hidden	Models

• Identify	what	needs	to	be	shared
• Eg:	Sharing	of	information	on	people	and	car	count	to	booking	context

• Same	things	may	have	different	meaning	in	different	contexts
• Eg:	Sensor	data	in	IoT	context	and	booking	context

• This	process	will	facilitate	avoiding	of	high	coupling	(Pitfall	!!)

• Microservices	should	never	be	chatty!
• Adds	to	performance	issues
• Lack	of	cohesion
• Eg:	too	many	back	and	forth	communication	between	two	
microservices



Modules	and	Services



Modules	and	Services	in	NdR



Shared	and	Hidden	Models

• Seperate	the	contexts	into	modules
• Eg: 	Recommendation	and	prediction	inside	intelligence

• Use	the	help	of	hidden	and	shared	models
• Shared	becomes	the	bridge	and	hidden	becomes	the	separation	points

• The	modules	becomes	candidates	for	microservices
• High	Cohesion	-	Everything	stays	within	context	and	modules	are	
independant

• Loose	Coupling	-	Only	what	is	needed	is	shared

• Avoid	premature	decomposition
• Early	decisions	can	be	costly	(eg:	entire	IoT	as	one	module)
• Re-decomposition	may	take	time,	effort	and	expenditure



Microservices	Integration:	
Overview



Integration	with	Shared	DB?

1

2

1 2or ?



Shared	DB	Integration?

Avoid	integration	with	shared	db	as	much	as	possible:
• Changing	DB	schema	based	on	one	microservice	need	affects	others
• Affects	evolution	of	system	eg:	changing	from	relational	to	non-relational
• Choice	of	DB	might	constrain	the	choice	of	language	for	implementing	
microservice	eg:	Java	might	have	more	db	driver	available	for	MySQL
• Goodbye	high	cohesion	and	loose	coupling	!!!



Microservices	
Communication	



Many	things	to	Consider

• Synchronous	Vs	Asynchronous
• Orchestration	v	Choreography
• REST	vs	GraphQL
• JSON	vs	XML	vs	Protobuf

• Communication	Patterns	exist

How	do	services	discover	other	service	instances?



Use	Service	Registry!!

Service	Discovery



Client-side	Service	Discovery

•	Each	microservice	registers	
itself	to	service	registry 	(as	
and	when	they	are	available)

•	Service	registry	responds	
with	the	instance	of	the	
requested	service	to	client

•	Fewer	network	calls	(just	
query	service	registry)

•	Coupling	between	client	and	
service	registry

Eg:	Netflix	Eureka



Server-side	Service	Discovery

• Client	(s)	sends	request	to	API	
gateway	or	load	balancer

• The	load	balancer	or	API	
gateway	uses	Service	registry	to	
discover	services

• Separation	of	logic	from	client

• Load	balancer	needs	to	be	
managed	and	replicated

•			Additional	network	hop

Eg:	Amazon	ELB,	Zookeeper



Is	Microservice	the	holy	
grail?



Some	Funny	Quotes	but	makes	sense

Monolith	->	microservice	but	then	we	need	docker,	kubernetes,	monitoring	and	what	not	!!!!
image	source:	twitter



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

