
Architectural Styles
& Patterns

CS6.401 Software Engineering

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in

https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been
gathered/adapted/generate from various sources as well as based on my
own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
1. Software Architecture in Practice, Len Bass, 2nd, 3rd edition
2. Various sources from the web that has been duly credited in the

respective slide

Monolith?

Monolith of Utah, USA Menhir (monolith), France Ponce Monolith, Bolivia

Monolithic Approach to E-commerce

Organizational
Architecture

Deployment

Monolithic Approach – What are some pitfalls?

• High degree of coupling - everyone needs to know everything !!!
• Change cycle and bug fix can take weeks - Modifiability and time to

market
• Adding new feature can be challenging - Extensibility
• Separation of concerns via components with inherent coupling -

Modularity
• Scaling system implies scaling the whole stack - Scalability
• Limited by the language of choice - eg: add recommendation feature to e-

commerce (Java or Python ?)
• Database is centralized - addition or modification is a costly process

Monolith has its own advantages too!

Service-Oriented

The Service-Oriented Pattern

The Service Oriented Pattern

SOA Pattern - Architectural Elements (Components)

1. Service Providers: Components that provide 1 or more services through defined
interfaces

2. Service Consumers: Invoke services directly or through intermediary

3. ESB: Intermediary component that can route and transform messages

4. Service Registry: Providers can register services, consumers can discvoer
services

5. Orchestration Server: Coordinates interaction between consumers and providers
based on languages

SOA Pattern - Architectural Elements (Connectors)

1. SOAP Connector: SOAP Protocol for synchronous communication over HTTP

2. REST Connector: Relies on request/response operations over HTTP

3. Asynchronous messaging connector: For point-to-point asynchronous message
exchanges or pub-sub exchanges

SOA Applied to E-Commerce

Overhead!!

SOA Pattern
Relations

Attachments of different components to available connectors

Constraints

1. Service consumers are connected to providers (ESBs or other intermediary
component may be used)

Weakness

1. Complex to build

2. Performance bottlenecks due to middleware

3. Performance gurantees are usually not met

Time to Evolve: Microservices

SOA Pattern - Architectural Elements (Connectors)

Domain Driven Design Large-Scale Systems Continuous Delivery

Infrastructure Automation Small Autonomous Teams

Microservices

Moving Towards Microservices

1990 2000 2010

Microservices: What does it Mean?

“Small autonomous services that work together” -- Sam Newman

“It is an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an
HTTP resource API” -- Martin Fowler

Microservices: What does it Mean?

Monolithic Version Microservices Version

Microservices: What does it Mean?

Source: https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html

Microservices: Who Uses Them?

Source: http://tinyurl.com/3kswbtak, Google images, Twitter

http://tinyurl.com/3kswbtak

Amazon’s API Mandate

Jeff Bezos,
Founder and President, Amazon

Letter from Jeff Bezos in 2002: https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/

https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/

Microservices: Key Advantages

Scaling is Easy

• Scale only the required microservices
• Adding a new feature can be just adding one another microservice

Heterogeneity

• Each microservice can be developed in different technologies
• Experimenting with new technology is easy

Resilience

• Only specific microservices goes down
• Grouping microservices as critical and non-critical can be done to add more

resilience

Microservices: Key Advantages

Organizational Alignment

• Easily distribute teams around microservices - eg: Amazon 2 pizza rule
• Minimize people working on one less codebase

Composability

• Easily compose microservices to get new functionality

Replaceability

• Cost of replacement is small - should not take more than 2 weeks
• Imagine replacing a 25 year old legacy system !!

Ease of Deployment

• Check and rollback easily
• Continuous integration and deployment is easier - DevOps!!!

How to identify
Microservices?

Main Takeaways

• Architectural Pattern serves as guidelines

• Always be aware of trade-offs

• A complex system can consists of multiple architectural patterns

• Think about an IoT system, e-commerce system or any complex
production system

This Photo by Unknown Author is licensed under CC BY

http://basementdesigner.com/basement-finishing-102/light-bulb-idea/
https://creativecommons.org/licenses/by/3.0/

How to identify
Microservices? – Lets go

back to NdR Case

NdR Case Study

https://www.streetscience.it

https://www.streetscience.it/

NdR Case Study

Goal: Develop a microservice based AI-powered event management system for NdR

Features: User registration, book venues, book parking lots, provide venue and
parking lot recommendation, priority booking based on small payment, check weather

Data Sources:

• Parking mats at entrances and exits of parking lot to get count of cars
• Handheld RFID readers to capture the count of people entering venue
• Cameras at different locations to provide real-time video feed
• People counter at venue exits to count people exiting venue

Microservices – How to
Design?

How to design?

Follow the principle of bounded contexts

• Identify different contexts inside the main domain [organizational boundary]
• Only share what is important rest remains within context

Ensure loose coupling

• Minimize coupling between microservices
• Should be easy to change and deploy one without affecting others
• Each microservice needs to know as little as possible about others

Maintain high cohesion

• Bundle one end to end feature or complete part of it inside one microservice
• Promotes robustness and reliability
• One change should never require change in 10 different places

What are the contexts in
NdR?

Contexts within NdR

Hidden and Shared Models

Hidden and Shared Models

Shared and Hidden Models

• Identify what needs to be shared
• Eg: Sharing of information on people and car count to booking context

• Same things may have different meaning in different contexts
• Eg: Sensor data in IoT context and booking context

• This process will facilitate avoiding of high coupling (Pitfall !!)

• Microservices should never be chatty!
• Adds to performance issues
• Lack of cohesion
• Eg: too many back and forth communication between two

microservices

Modules and Services

Modules and Services in NdR

Shared and Hidden Models

• Seperate the contexts into modules
• Eg: Recommendation and prediction inside intelligence

• Use the help of hidden and shared models
• Shared becomes the bridge and hidden becomes the separation points

• The modules becomes candidates for microservices
• High Cohesion - Everything stays within context and modules are

independant
• Loose Coupling - Only what is needed is shared

• Avoid premature decomposition
• Early decisions can be costly (eg: entire IoT as one module)
• Re-decomposition may take time, effort and expenditure

Thank You

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

Course website: karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

	Slide 1: Architectural Styles & Patterns
	Slide 2: Acknowledgements
	Slide 3: Monolith?
	Slide 4: Monolithic Approach to E-commerce
	Slide 5: Monolithic Approach – What are some pitfalls?
	Slide 6: Service-Oriented
	Slide 7: The Service-Oriented Pattern
	Slide 8: The Service Oriented Pattern
	Slide 9: SOA Pattern - Architectural Elements (Components)
	Slide 10: SOA Pattern - Architectural Elements (Connectors)
	Slide 11: SOA Applied to E-Commerce
	Slide 12: SOA Pattern
	Slide 13: Time to Evolve: Microservices
	Slide 14: SOA Pattern - Architectural Elements (Connectors)
	Slide 15: Moving Towards Microservices
	Slide 16: Microservices: What does it Mean?
	Slide 17: Microservices: What does it Mean?
	Slide 18: Microservices: What does it Mean?
	Slide 19: Microservices: Who Uses Them?
	Slide 20: Amazon’s API Mandate
	Slide 21: Microservices: Key Advantages
	Slide 22: Microservices: Key Advantages
	Slide 23: How to identify Microservices?
	Slide 24: Main Takeaways
	Slide 25: How to identify Microservices? – Lets go back to NdR Case
	Slide 26: NdR Case Study
	Slide 27: NdR Case Study
	Slide 28: Microservices – How to Design?
	Slide 29: How to design?
	Slide 30: What are the contexts in NdR?
	Slide 31: Contexts within NdR
	Slide 32: Hidden and Shared Models
	Slide 33: Hidden and Shared Models
	Slide 34: Shared and Hidden Models
	Slide 35: Modules and Services
	Slide 36: Modules and Services in NdR
	Slide 37: Shared and Hidden Models
	Slide 38: Thank You

