Architectural Styles
& Patterns

CS6.401 Software Engineering

Q 0£be (3 Eyiﬂt‘l@/\’l) 1‘265 ea\fcll Cﬂq‘l’v&
Dr. Karthik Vaidhyanthan
karthik.vaidhyanathan @iiit.ac.in

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been

gathered /adapted/generate from various sources as well as based on my
own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
1. Software Architecture in Practice, Len Bass, 24, 37 edition

2. Various sources from the web that has been duly credited in the
respective slide

Monolith?

S

Monolith of Utah, USA Menhir (monolith), France Ponce Monolith, Bolivia

Monolithic Approach to E-commerce

Organizational

Ca
\
T\
UI Developers/
App developers

e N d

\
RGN S

App backend team(s)

A\
—
- -

DB Administrators

Architecture
HIML/AS5 Android/iOS

and JS

c

1

Java/.NET/ User
manager

J

Catalog Order Payment
manager manager | (——) manager

Oracle/MySQL/..

Catalog Payment

Deployment

Application
webserver
(for web)

w| Database
S=—1 server

Monolithic Approach - What are some pitfalls?

* High degree of coupling - everyone needs to know everything !!!

* Change cycle and bug fix can take weeks - Modifiability and time to
market

* Adding new feature can be challenging - Extensibility

 Separation of concerns via components with inherent coupling -
Modularity

* Scaling system implies scaling the whole stack - Scalability

* Limited by the language of choice - eg: add recommendation feature to e-
commerce (Java or Python ?)

* Database is centralized - addition or modification is a costly process

Monolith has its own advantages too!

Service-Oriented |

The Service-Oriented Pattern

Context Problem

How to provide support for

A number of services offered by interoperability among different
service providers and consumed by components running in different
service consumers. Service consumer platforms implemented in different

should be able to use services without languages

knowing detailed implementation -)
availability, performance, security

Collection of loosely coupled services
with clearly defined interfaces. Can be
implemented in different languages.
Supports commmunication between and
to/from services

Solution

The Service Oriented Pattern

Service Consumer/client Orchestration
Engine

Enterprise Service Bus

e —
Service Registry

A

\4 y v

Service 1 Service 2 Service 3
(Provider) (Provider) (Provider)

SOA Pattern - Architectural Elements (Components)

1. Service Providers: Components that provide 1 or more services through defined
interfaces

2. Service Consumers: Invoke services directly or through intermediary
3. ESB: Intermediary component that can route and transform messages

4. Service Registry: Providers can register services, consumers can discvoer
services

5. Orchestration Server: Coordinates interaction between consumers and providers
based on languages

SOA Pattern - Architectural Elements (Connectors)

1. SOAP Connector: SOAP Protocol for synchronous communication over HTTP
2. REST Connector: Relies on request/response operations over HTTP

3. Asynchronous messaging connector: For point-to-point asynchronous message
exchanges or pub-sub exchanges

SOA Applied to E-Commerce

Overhead!!

Third Party
) (Catalog Serv1ce> (Order Service) (Service (S))

User Product Order
database database database

SOA Pattern

Relations

Attachments of different components to available connectors

Constraints

1. Service consumers are connected to providers (ESBs or other intermediary
component may be used)

Weakness
1. Complex to build
2. Performance bottlenecks due to middleware

3. Performance gurantees are usually not met

Time to Evolve: Microservices |

S P N

oy,

SOA Pattern - Architectural Elements (Connectors)

Domain Driven Design Large-Scale Systems Continuous Delivery

Infrastructure Automation Small Autonomous Teams

Microservices

N i ——— - — -

Moving Towards Microservices

IQ ¢
o B

MONOLITHIC SOA MICROSERVICES
Single unit Coarse-grained Fine-grained

1990 2000 2010

Microservices: What does it Mean?

“Small autonomous services that work together” -- Sam Newman

“It is an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an
HTTP resource API” -- Martin Fowler

Microservices: What does it Mean?

Monolithic Version | Microservices Version

HTML/CSS
and JS

API Gateway

|l
*—

..

- [1 eresssessrsssscsvescesesesnnavar,

Java/.NET/ User i1 /Registration \ i i Authentication : : Product Product
Manager Service Service : ¢\ display service/ : i \ rating service / : :

J
r

D ot |0 e [Do || | [oew] | [

manager manager manager

..

--

Oracle/MySQL/.. Cart . /" Billing /7 Delivery Payment | :
P E g Service o Service Pl Service P Service P

User Catalog Order Payment
- [bilingdo | i [deiverydo | i [paymentdb] : :

oo

oooooooooooooooooooooooooooooooooo

Microservices: What does it Mean?

A monolithic application puts all its -’ A microservices architecture puts o
functionality into a single process... & each element of functionality into a
. B 4 separate service...

... and scales by replicating the
monolith on multiple servers

... and scales by distributing these services
across servers, replicating as needed.

oV

oV

Source: https://martinfowler.com/articles /microservices.html

&

4

https://martinfowler.com/articles/microservices.html

Microservices: Who Uses Them?

3
e

-
"l gl

NETFLIX amazoncom

Source: http: //tinyurl.com /3kswbtak, Google images, Twitter

http://tinyurl.com/3kswbtak

Amazon’'s API Mandate

1. All teams will henceforth expose their data and functionality
through service interfaces.

2. Teams must communicate with each other through these
interfaces.

3. There will be no other form of interprocess communication
allowed: no direct linking, no direct reads of another team’s data
store, no shared-memory model, no back-doors whatsoever. The
only communication allowed is via service interface calls over the

network.

Wl 4. It doesn’t matter what technology they use. HTTP, Corba, Pubsub,
Jeff Bezos, custom protocols — doesn’t matter.

Founder and President, Amazon 5. All service interfaces, without exception, must be designed from

the ground up to be externalizable. That is to say, the team must

plan and design to be able to expose the interface to developers in

the outside world. No exceptions.

6. Anyone who doesn’t do this will be fired.

/. Thank you; have a nice day!

Letter from Jeff Bezos in 2002:

https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/

Microservices: Key Advantages

Scaling is Easy

 Scale only the required microservices
* Adding a new feature can be just adding one another microservice

Heterogeneity

* Each microservice can be developed in different technologies
* Experimenting with new technology is easy

Resilience

* Only specific microservices goes down
* Grouping microservices as critical and non-critical can be done to add more
resilience

Microservices: Key Advantages

Organizational Alighment

* Easily distribute teams around microservices - eg: Amazon 2 pizza rule
* Minimize people working on one less codebase

Composability
* Easily compose microservices to get new functionality
Replaceability

* Cost of replacement is small - should not take more than 2 weeks
* Imagine replacing a 25 year old legacy system !!

Ease of Deployment

* Check and rollback easily
* Continuous integration and deployment is easier - DevOps!!!

Microservices?

How to identify I

Main Takeaways

* Architectural Pattern serves as guidelines

* Always be aware of trade-offs

* A complex system can consists of multiple architectur:

* Think about an IoT system, e-commerce system or any
production system

his Photo by Unknown Author is licensed under CCBY

http://basementdesigner.com/basement-finishing-102/light-bulb-idea/
https://creativecommons.org/licenses/by/3.0/

How to identify
Microservices? — Lets go
back to NdR Case

NdR Case Study

PIAZZA SANBAS L Ip FATTORI

Wy,

&2
VIALED.DESLIABRIZZ! ?m"m[m .

Q)

0 (A
A 5 -
® ®
L’AQUILA
STREET SCIENCE b LEGENDA

DISCORSIDA BAR ®

NERO CAFFE

Corso Vittorio Emanuele 45

@ PALAZZO CAMPONESCHI
@ PALAZZETTO DEI NOBILI

@ PIAZZA PALAZZO

OLIMPIA CAFFE

Corso Vittorio Emanuele Q @ QUATTRO CANTONI
ENOTECA GARIBALDI

Via Garibaldi 38 @ @ VIA SIMONETTO

BIRRERIA ANBRA

Via Garibaldi 49 ® @ C.SO VITTORIO EMANUELE
LA CANTINA DEL GALLO ‘n

Piazza Palazzo 8 @ SAN BERNARDINO
FRATELLI ILBACARO 2.0 PIAZZA CHIARINO

Via Roio 21 '

OSTERIA PANTASIMA @ PARCO DEL CASTELLO

Via Garibaldi 55
OLD ROOM - BEER AND FOOD @ TEATRO RIDOTTO
Via Garibaldi 48 o e

IL VERMUTTINO L\ PARCHEGGIO @ PALAZZO FIBBIONI
Corso Vittorio Emanuele 143 1= DISABILI

7.30 P™

Ricerca

NOME EVENTO

MACRO EVENTO

ORARIO D1 INIZIO

200

Lvooo

CATEGORIA

2300

09

~
v\

NS

15

O
v

N

17

W

N

Peor Te In Corso
ILCAVALLO MAGICO £ ALTRE
FIABE

SCUOLA B CULTURA - ARTE &
SMETTACOLO

STREEY SCIENCE CONCORSO
FOTOGRAFICO

SCUOLA B CULTURA - ARTE S
SPETTACOLO

PLANETARIO
v

SLUOLA 6 CULTURA - SCENTA S
TEONCLOGA - ARTE 6 SPETTALOLO

DANCE ON THE FLUID
v

https://www.streetscience.it/

NdR Case Study

Goal: Develop a microservice based Al-powered event management system for NdR

Features: User registration, book venues, book parking lots, provide venue and
parking lot recommendation, priority booking based on small payment, check weather

Data Sources:

* Parking mats at entrances and exits of parking lot to get count of cars
* Handheld RFID readers to capture the count of people entering venue
e Cameras at different locations to provide real-time video feed

* People counter at venue exits to count people exiting venue

Design?

Microservices - How to I

How to design?

Follow the principle of bounded contexts

* Identify different contexts inside the main domain [organizational boundary]
* Only share what is important rest remains within context

Ensure loose coupling

* Minimize coupling between microservices
* Should be easy to change and deploy one without affecting others
* Each microservice needs to know as little as possible about others

Maintain high cohesion

* Bundle one end to end feature or complete part of it inside one microservice
* Promotes robustness and reliability
* One change should never require change in 10 different places

NdR?

What are the contexts in I

Contexts within NdR

..

L] . L]
..

..

.....
...

Hidden and Shared Models |

.

.

payment

info

S— N

profile info

oooooooooooooooooooooooooooooooo

................................

|

\-—./’_\

——

Booking

[

weather

choices

predictions

...............................

ooooooooooooooooooooooooooooooooo

................................

count info

info

S—" N

Shared and Hidden Models

* [dentify what needs to be shared
* Eg: Sharing of information on people and car count to booking context

* Same things may have different meaning in different contexts
* Eg: Sensor data in [oT context and booking context

 This process will facilitate avoiding of high coupling (Pitfall !!)

* Microservices should never be chatty!
* Adds to performance issues
* Lack of cohesion

* Eg: too many back and forth communication between two
microservices

Modules and Services |

Modules and Services in NdR

Payment
Payment
Management
payment
info
— . | ™ S D |
{ User : i Booking :
: : . Parking lot
Registration Authentication | Venue Booking Booking
profile info 5{
: | — Booking
Management Validation
‘esesssssssssnssssnsssesssntassasane l ----------------------------------- T I --
predictions count info
Weather Intelligence IoT
E P peon]
: : RFID o
Weather] i| Reccomendation Face recognition ounter
Forecasts] 3
Crowd Parking mats Cameras
Prediction P

weather
info

S— N

count info

Shared and Hidden Models

* Seperate the contexts into modules
 Eg: Recommendation and prediction inside intelligence

* Use the help of hidden and shared models
* Shared becomes the bridge and hidden becomes the separation points

* The modules becomes candidates for microservices
* High Cohesion - Everything stays within context and modules are
independant
* Loose Coupling - Only what is needed is shared

e Avoid premature decomposition
* Early decisions can be costly (eg: entire IoT as one module)
* Re-decomposition may take time, effort and expenditure

Thank You

Course website: karthikv1392.github.i 401

Email: karthik.vaidhvanathan @iiit.ac.in
Web: h . //karthikvaidhvanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

	Slide 1: Architectural Styles & Patterns
	Slide 2: Acknowledgements
	Slide 3: Monolith?
	Slide 4: Monolithic Approach to E-commerce
	Slide 5: Monolithic Approach – What are some pitfalls?
	Slide 6: Service-Oriented
	Slide 7: The Service-Oriented Pattern
	Slide 8: The Service Oriented Pattern
	Slide 9: SOA Pattern - Architectural Elements (Components)
	Slide 10: SOA Pattern - Architectural Elements (Connectors)
	Slide 11: SOA Applied to E-Commerce
	Slide 12: SOA Pattern
	Slide 13: Time to Evolve: Microservices
	Slide 14: SOA Pattern - Architectural Elements (Connectors)
	Slide 15: Moving Towards Microservices
	Slide 16: Microservices: What does it Mean?
	Slide 17: Microservices: What does it Mean?
	Slide 18: Microservices: What does it Mean?
	Slide 19: Microservices: Who Uses Them?
	Slide 20: Amazon’s API Mandate
	Slide 21: Microservices: Key Advantages
	Slide 22: Microservices: Key Advantages
	Slide 23: How to identify Microservices?
	Slide 24: Main Takeaways
	Slide 25: How to identify Microservices? – Lets go back to NdR Case
	Slide 26: NdR Case Study
	Slide 27: NdR Case Study
	Slide 28: Microservices – How to Design?
	Slide 29: How to design?
	Slide 30: What are the contexts in NdR?
	Slide 31: Contexts within NdR
	Slide 32: Hidden and Shared Models
	Slide 33: Hidden and Shared Models
	Slide 34: Shared and Hidden Models
	Slide 35: Modules and Services
	Slide 36: Modules and Services in NdR
	Slide 37: Shared and Hidden Models
	Slide 38: Thank You

