
Microservices and
EDA

CS6.401 Software Engineering

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in

https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been
gathered/adapted/generate from various sources as well as based on my
own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
1. Building Microservices, Sam Newman, 2nd edition
2. Various sources from the web that has been duly credited in the

respective slide

Microservices: Quick Recap

Moving Towards Microservices

1990 2000 2010

Microservices: What does it Mean?

“Small autonomous services that work together” -- Sam Newman

“It is an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an
HTTP resource API” -- Martin Fowler

Microservices: What does it Mean?

Monolithic Version Microservices Version

How to design?

Follow the principle of bounded contexts

• Identify different contexts inside the main domain [organizational boundary]
• Only share what is important rest remains within context

Ensure loose coupling

• Minimize coupling between microservices
• Should be easy to change and deploy one without affecting others
• Each microservice needs to know as little as possible about others

Maintain high cohesion

• Bundle one end to end feature or complete part of it inside one microservice
• Promotes robustness and reliability
• One change should never require change in 10 different places

Microservices Integration:
Overview

Integration with Shared DB?

1

2

1 2or ?

Shared DB Integration?

Avoid integration with shared db as much as possible:

• Changing DB schema based on one microservice need affects others

• Affects evolution of system eg: changing from relational to non-relational

• Choice of DB might constrain the choice of language for implementing
microservice eg: Java might have more db driver available for MySQL

• Goodbye high cohesion and loose coupling !!!

Microservices
Communication

Many things to Consider

• Synchronous Vs Asynchronous

• Orchestration v Choreography

• REST vs GraphQL

• JSON vs XML vs Protobuf

• Communication Patterns exist

How do services discover other service instances?

Use Service Registry!!

Service Discovery

Client-side Service Discovery

• Each microservice registers
itself to service registry (as
and when they are available)

• Service registry responds
with the instance of the
requested service to client

• Fewer network calls (just
query service registry)

• Coupling between client and
service registry

Eg: Netflix Eureka

Server-side Service Discovery

• Client (s) sends request to API
gateway or load balancer

• The load balancer or API
gateway uses Service registry to
discover services

• Separation of logic from client

• Load balancer needs to be
managed and replicated

• Additional network hop

Eg: Amazon ELB, Zookeeper

Is Microservice the holy
grail?

Some Funny Quotes but makes sense

Monolith -> microservice but then we need docker, kubernetes, monitoring and what not !!!!

image source: twitter

EDA: An Intuition

What can be the issues with the above design?

Enters Event Driven Architecture

Event Driven Architecture: An Overview

• Independent components asynchronously emit and receive
events communicated over event buses

• Produce, detect and consume events
• Highly decoupled components – Minimal amount of coupling

(topics, queue names, etc.)

Design elements

• Components: concurrent event generators and event consumers
• Connectors: event bus (may be more than one)
• Data: events

Topology

Communication via the event bus or link only (Mediator or Broker)

Event Driven Architecture: Mediator

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Mediator

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Mediator

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Mediator Topology: An Overview

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Similar to the Orchestration in traditional SOA
Two key events – Initial and Processing event

Four main types of components:
1. Event queue – Responsible to transfer events to event mediator
2. Event Mediator – Orchestrates the processing of events to accomplish
the overall functionality
3. Event Channel - Topics or queues to which events are ingested by
mediator (eg: Kafka topic)
4. Event Processor - Implements the business logic

1. Can be fine grained or Coarse grained)

2. Advice: keep it to one functionality

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Broker

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Broker

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Broker Topology: An Overview

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

• Similar to the Choreography in traditional SOA
• Two main types of components:

1. Broker – Consists of all the event channels for event
processing. Can be topics or queues

2. Event Processor – Responsible for processing the event
and sending a notification to the event channels

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

How to Decide?

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Advantages

1. High performance
2. High Scalability
3. Ease of Deployment
4. Ease of modifications/Evolved easily

Disadvantages

• Remote process availability – Liveliness of a consumer
• Lack of responsiveness
• Broker or mediator failures
• Testing can be tedious
• Development can be complex

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Thank You

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

Course website: karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

	Slide 1: Microservices and EDA
	Slide 2: Acknowledgements
	Slide 3: Microservices: Quick Recap
	Slide 4: Moving Towards Microservices
	Slide 5: Microservices: What does it Mean?
	Slide 6: Microservices: What does it Mean?
	Slide 7: How to design?
	Slide 8: Microservices Integration: Overview
	Slide 9: Integration with Shared DB?
	Slide 10: Shared DB Integration?
	Slide 11: Microservices Communication
	Slide 12: Many things to Consider
	Slide 13: Service Discovery
	Slide 14: Client-side Service Discovery
	Slide 15: Server-side Service Discovery
	Slide 16: Is Microservice the holy grail?
	Slide 17: Some Funny Quotes but makes sense
	Slide 18: EDA: An Intuition
	Slide 19: Enters Event Driven Architecture
	Slide 20: Event Driven Architecture: An Overview
	Slide 21: Event Driven Architecture: Mediator
	Slide 22: Event Driven Architecture: Mediator
	Slide 23: Event Driven Architecture: Mediator
	Slide 24: Mediator Topology: An Overview
	Slide 25: Event Driven Architecture: Broker
	Slide 26: Event Driven Architecture: Broker
	Slide 27: Broker Topology: An Overview
	Slide 28: How to Decide?
	Slide 29: Thank You

