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Microservices: What does it Mean?

“Small autonomous services that work together” -- Sam Newman

“It is an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an
HTTP resource API” -- Martin Fowler



Microservices: What does it Mean?

Monolithic Version | Microservices Version

HTML/CSS
and JS

API Gateway

|l
*—

-------------------------------------------------------------------------------------------------------------------------------------------------------

......................................................................................................

- [ 1 eresssessrsssscsvescesesesnnavar,

Java/.NET/ User i1 /Registration \ i i Authentication : : Product Product
Manager Service Service : ¢\ display service/ : i \ rating service / : :

J
r

D ot |0 e [ Do || | [oew] | [

manager manager manager

........................................................................................................................................

----------------------------------------------------------------------------------------------------------------------------------------

Oracle/MySQL/.. Cart . /" Billing /7 Delivery Payment | :
P E g Service o Service Pl Service P Service P

User Catalog Order Payment
- [bilingdo | i [deiverydo | i [paymentdb] : :

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

oooooooooooooooooooooooooooooooooo



How to design?

Follow the principle of bounded contexts

* Identify different contexts inside the main domain [organizational boundary]
* Only share what is important rest remains within context

Ensure loose coupling

* Minimize coupling between microservices
* Should be easy to change and deploy one without affecting others
* Each microservice needs to know as little as possible about others

Maintain high cohesion

* Bundle one end to end feature or complete part of it inside one microservice
* Promotes robustness and reliability
* One change should never require change in 10 different places



Overview

Microservices Integration: I



Integration with Shared DB?
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Shared DB Integration?

Avoid integration with shared db as much as possible:
* Changing DB schema based on one microservice need affects others
* Affects evolution of system eg: changing from relational to non-relational

* Choice of DB might constrain the choice of language for implementing
microservice eg: Java might have more db driver available for MySQL

* Goodbye high cohesion and loose coupling !!!



Communication

Microservices I



Many things to Consider

* Synchronous Vs Asynchronous

* Orchestration v Choreography

* REST vs GraphQL
* JSON vs XML vs Protobuf

e Communication Patterns exist

How do services discover other service instances?



Service Discovery
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Client-side Service Discovery
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Server-side Service Discovery

* (Client (s) sends request to API
gateway or load balancer Eg: Amazon ELB, Zookeeper
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Some Funny Quotes but makes sense
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Honest Status Page @honest_update - Oct 8, 2015 vV
We replaced our monolith with micro services so that every outage could be
more like a murder mystery.

Q 21 0 3K Q 26K T

Gert de Pagter @BackEndTea - Jan 7 000
Thanks to microservices, our JOINS are now over HTTP.

Q) 39 T 345 QO 14K T

Monolith -> microservice but then we need docker, kubernetes, monitoring and whatnot!!!

image source: twitter



EDA: An Intuition
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Enters Event Driven Architecture
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Event Driven Architecture: An Overview

* Independent components asynchronously emit and receive
events communicated over event buses

 Produce, detect and consume events

* Highly decoupled components - Minimal amount of coupling
(topics, queue names, etc.)

Design elements

 Components: concurrent event generators and event consumers
* Connectors: event bus (may be more than one)
* Data: events

Topology

Communication via the event bus or link only (Mediator or Broker)



Event Driven Architecture: Mediator
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https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Mediator
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Event Driven Architecture: Mediator
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Mediator Topology: An Overview

Similar to the Orchestration in traditional SOA
Two key events - Initial and Processing event

Four main types of components:
1. Event queue - Responsible to transfer events to event mediator
2. Event Mediator - Orchestrates the processing of events to accomplish
the overall functionality
3. Event Channel - Topics or queues to which events are ingested by
mediator (eg: Kafka topic )
4. Event Processor - Implements the business logic
1. Can be fine grained or Coarse grained)

2. Advice: keep it to one functionality
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Event Driven Architecture: Broker
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Event Driven Architecture: Broker
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Broker Topology: An Overview

* Similar to the Choreography in traditional SOA
* Two main types of components:

1. Broker - Consists of all the event channels for event
processing. Can be topics or queues

2. Event Processor - Responsible for processing the event
and sending a notification to the event channels
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How to Decide?

Advantages

1. High performance

2. High Scalability

3. Ease of Deployment

4. Ease of modifications/Evolved easily

Disadvantages

* Remote process availability - Liveliness of a consumer
* Lack of responsiveness

* Broker or mediator failures

* Testing can be tedious

* Development can be complex
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Thank You
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