Microservices and
EDA

CS6.401 Software Engineering

Q 0£be (3 Eyiﬂﬂéf\ﬁ) 1‘265 Eﬂ\fcll CEY\'I'Y&
Dr. Karthik Vaidhyanthan
karthik.vaidhyanathan @iiit.ac.in

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been

gathered /adapted/generate from various sources as well as based on my
own experiences and knowledge -- Karthik Vaidhyanathan

Sources:
1. Building Microservices, Sam Newman, 2"¢ edition

2. Various sources from the web that has been duly credited in the
respective slide

Microservices: Quick Recap |

Moving Towards Microservices

IQ ¢
o B

MONOLITHIC SOA MICROSERVICES
Single unit Coarse-grained Fine-grained

1990 2000 2010

Microservices: What does it Mean?

“Small autonomous services that work together” -- Sam Newman

“It is an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an
HTTP resource API” -- Martin Fowler

Microservices: What does it Mean?

Monolithic Version | Microservices Version

HTML/CSS
and JS

API Gateway

|l
*—

..

- [1 eresssessrsssscsvescesesesnnavar,

Java/.NET/ User i1 /Registration \ i i Authentication : : Product Product
Manager Service Service : ¢\ display service/ : i \ rating service / : :

J
r

D ot |0 e [Do || | [oew] | [

manager manager manager

..

--

Oracle/MySQL/.. Cart . /" Billing /7 Delivery Payment | :
P E g Service o Service Pl Service P Service P

User Catalog Order Payment
- [bilingdo | i [deiverydo | i [paymentdb] : :

oo

oooooooooooooooooooooooooooooooooo

How to design?

Follow the principle of bounded contexts

* Identify different contexts inside the main domain [organizational boundary]
* Only share what is important rest remains within context

Ensure loose coupling

* Minimize coupling between microservices
* Should be easy to change and deploy one without affecting others
* Each microservice needs to know as little as possible about others

Maintain high cohesion

* Bundle one end to end feature or complete part of it inside one microservice
* Promotes robustness and reliability
* One change should never require change in 10 different places

Overview

Microservices Integration: I

Integration with Shared DB?

&

Parking Mat

Service

—

—

Parking mat
DB

O

Parking Booking
Service

——

—

Parking booking

DB

N

Shared DB Integration?

Avoid integration with shared db as much as possible:
* Changing DB schema based on one microservice need affects others
* Affects evolution of system eg: changing from relational to non-relational

* Choice of DB might constrain the choice of language for implementing
microservice eg: Java might have more db driver available for MySQL

* Goodbye high cohesion and loose coupling !!!

Communication

Microservices I

Many things to Consider

* Synchronous Vs Asynchronous

* Orchestration v Choreography

* REST vs GraphQL
* JSON vs XML vs Protobuf

e Communication Patterns exist

How do services discover other service instances?

Service Discovery

Which instance to
use ?

Service A
Client (s)

--

Service A
10.6.12.9:7000

REST :
Service B A : T ¢

Service A
10.8.17.2:8500

Use Service Registry!!

Client-side Service Discovery

* Each microservice registers
itself to service registry (as Eg: Netflix Eureka
and when they are available)

REST .
API Service A

Client (s) | 10.6.12.9:1200

* Service registry responds “ent
with the instance of the API :

. . : Gateway
requested service to client

Registry
’] aware
* Fewer network calls (just

REST
API

Service A
10.6.12.9:7000

registry
client

Service B API

available
instances

query service registry)

instance

request .
9 registers

REST

. Coupling between client and e
service registry 10.8.17.2:8500

Service .
registry
Registry client

Server-side Service Discovery

* (Client (s) sends request to API
gateway or load balancer Eg: Amazon ELB, Zookeeper

REST

* Theload balancer or API _
Client (s) API Service A

gateway uses Service registry to i, 5 [10.6.12.9:1200
discover services : : registey

client

API
Gateway
* Separation of logic from client .
> b l()a rest | Service A
alancer 22_10.6.12.9:7000
 Load balancer needs to be service B |5t gy
managed and replicated | avalable
instance instances
reqtuest
¢ Additional network hop Y "o | Service A
Service [10.8.17.2:8500

registry

Registry client

grail?

[s Microservice the holy I

Some Funny Quotes but makes sense

-

' :.; ?‘ i

Honest Status Page @honest_update - Oct 8, 2015 vV
We replaced our monolith with micro services so that every outage could be
more like a murder mystery.

Q 21 0 3K Q 26K T

Gert de Pagter @BackEndTea - Jan 7 000
Thanks to microservices, our JOINS are now over HTTP.

Q) 39 T 345 QO 14K T

Monolith -> microservice but then we need docker, kubernetes, monitoring and whatnot!!!

image source: twitter

EDA: An Intuition

RFID Camera Temperature

«°|1
| |

@ Data Processor

-
I | Database

:D - r»‘ @ Analytics

Desktop and
Mobile

What can be the issues with the above design?

Enters Event Driven Architecture

RFID Camera Temperature

« °|17

Q)

‘ @ Data Processor 4—I>~" \

Database

EE <—O)-— @ Analytics

Event Driven Architecture: An Overview

* Independent components asynchronously emit and receive
events communicated over event buses

 Produce, detect and consume events

* Highly decoupled components - Minimal amount of coupling
(topics, queue names, etc.)

Design elements

 Components: concurrent event generators and event consumers
* Connectors: event bus (may be more than one)
* Data: events

Topology

Communication via the event bus or link only (Mediator or Broker)

Event Driven Architecture: Mediator

?

Event
Queue

[Event Mediator]

v v v
(G @D @D

Event Event Event
Channel Channel Channel
) - , -) l) +) ¥
Event Processor Event Processor Event Processor Event Processor Event Processor

|nmdMe'|nmdMe' |nmdMe'|nmdme' |ndee'|nwdum' lnmdMe"nmdMe' lmodMe'lnwdme'
lndee'[nmdMe' |ndee'|nmdme. |nwdme'|nwdum' |ndee'|nmdMe' lmodMe"nmdme'

L] . 1 . a] a a a .
D NWW.QO om/libra N /software-arch 1re-pa N1s/97814919714 n02.htm

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Mediator

Relocation
[You Move...}

- Event Mediator

-

A > m > >m >
Change Recalc Update Adjust Notify
Address Quote Claims Claims Insured

v v v v

Change Recalc Adjust Notify
Address Quote Claims Insured

v

Update
Claims

Notification
Processor

Claims
Processor

Quote
Processor

Customer

Adjustment
Processor

Processor

L] . 1 . a . a a .
D NWW.QO om/libra N /software-arch 1re-pa N1s/97814919714 n02.htm

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Mediator

Relocation
[You Move...}

- Event Mediator

-

A > m > >m >
Change Recalc Update Adjust Notify
Address Quote Claims Claims Insured

v v v v

Change Recalc Adjust Notify
Address Quote Claims Insured

v

Update
Claims

Notification
Processor

Claims
Processor

Quote
Processor

Customer

Adjustment
Processor

Processor

L] . 1 . a . a a .
D NWW.QO om/libra N /software-arch 1re-pa N1s/97814919714 n02.htm

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Mediator Topology: An Overview

Similar to the Orchestration in traditional SOA
Two key events - Initial and Processing event

Four main types of components:
1. Event queue - Responsible to transfer events to event mediator
2. Event Mediator - Orchestrates the processing of events to accomplish
the overall functionality
3. Event Channel - Topics or queues to which events are ingested by
mediator (eg: Kafka topic)
4. Event Processor - Implements the business logic
1. Can be fine grained or Coarse grained)

2. Advice: keep it to one functionality

pDS: / /wWww.oreli om/libra lew /software-architecture-pattern 8314919714 n02.htm

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Broker

7~

Event Processor

' module' ' module’
' module' ' module'

DS; NWW.0I'E

Event Processor

' module ' ' module ' ‘

' module. ' module.

Event
Channel

Event
Channel

Event
Channel

~

Event Processor

' module' ' module.
' module' ' module'

-

Event Processor

' module. ' module'
(module' ' module'

7~

Event Processor

' module' ' module'
| module' ' module'

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Event Driven Architecture: Broker

DS; NWW.0I'E

| You Move . .. '

Customer
Process

I ‘
—
— \
..-"-— 8
Vg =~

[Quote Process I [Claims Process
3 - 1l

D [

Quote

i — - 1
l + a—— "
Notification Adjustment
Process Process

314919714 n02.51

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Broker Topology: An Overview

* Similar to the Choreography in traditional SOA
* Two main types of components:

1. Broker - Consists of all the event channels for event
processing. Can be topics or queues

2. Event Processor - Responsible for processing the event
and sending a notification to the event channels

L] - 1 - a - a a .
D N'WW.Q om/libra N /software-arch 1re-pa N1s/97814919714 n02.htm

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

How to Decide?

Advantages

1. High performance

2. High Scalability

3. Ease of Deployment

4. Ease of modifications/Evolved easily

Disadvantages

* Remote process availability - Liveliness of a consumer
* Lack of responsiveness

* Broker or mediator failures

* Testing can be tedious

* Development can be complex

pDS: / /wWww.oreli om/libra lew /software-architecture-pattern 314

https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/ch02.html

Thank You

Course website: karthikv1392.github.i 401

Email: karthik.vaidhvanathan @iiit.ac.in
Web: h . //karthikvaidhvanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

	Slide 1: Microservices and EDA
	Slide 2: Acknowledgements
	Slide 3: Microservices: Quick Recap
	Slide 4: Moving Towards Microservices
	Slide 5: Microservices: What does it Mean?
	Slide 6: Microservices: What does it Mean?
	Slide 7: How to design?
	Slide 8: Microservices Integration: Overview
	Slide 9: Integration with Shared DB?
	Slide 10: Shared DB Integration?
	Slide 11: Microservices Communication
	Slide 12: Many things to Consider
	Slide 13: Service Discovery
	Slide 14: Client-side Service Discovery
	Slide 15: Server-side Service Discovery
	Slide 16: Is Microservice the holy grail?
	Slide 17: Some Funny Quotes but makes sense
	Slide 18: EDA: An Intuition
	Slide 19: Enters Event Driven Architecture
	Slide 20: Event Driven Architecture: An Overview
	Slide 21: Event Driven Architecture: Mediator
	Slide 22: Event Driven Architecture: Mediator
	Slide 23: Event Driven Architecture: Mediator
	Slide 24: Mediator Topology: An Overview
	Slide 25: Event Driven Architecture: Broker
	Slide 26: Event Driven Architecture: Broker
	Slide 27: Broker Topology: An Overview
	Slide 28: How to Decide?
	Slide 29: Thank You

