Concluding
Thoughts

CS6.401 Software Engineering

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

AP A T e
| &4 {

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

HYDERABAD

PR[C

g led e, @'m@(’/’ﬁ) Z@ s M\Vd] CGV\TVL

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Software Engineering! |

Software Development Lifecycle

O < <

Maintenance Deployment Testing

What we learned so far?

Understand
and improve
this part

- Implement
new feature

Architect
a new system

How do

do this?
o]
(o] m
8
'l
\ y
"4
Beginner Developer Pro Developer Architect
>
Career Timeline
This Course
Modeling Design Principles Architectural Framework

Refactoring Design Patterns Architectural Patterns

Modeling and Refactoring

So what is a software model? Technical Debt - Definition

A simplified or partial representation of a real system, defined in
order to accomplish a task or to reach an agreement.

Technical debt is the debt that accrues when you knowingly or
unknowingly make wrong or non-optimal design decisions

Metaphor coined by Ward Cunningham, 1992

/ How do I modify
this? This looks

ﬁts just a quick fix
add to the code

ﬁgepresems

/its just a quick fix'
add to the code

m ol o — Lo
Aa
</> E = |::)
Mapping: A model is always a mapping of some real system ™ =
Reduction: A model reflects only relevant set of properties of original system - ,
Pragmatism: A model needs to be usable in place of the actual system with ”
respect to some purpose ,
Quick fix Add a feature Add more features
2 : 4
Software Quality as an Indicator Types of Design Smells
Imperative Abstraction
Incomplete Abstraction
. : Multifaceted Abstraction
Software getting increasingly Software gets more frequent fixes
complex and hard to understand se re frequ
and each Abstraction
gt more e
Leaky Encapsulation

Cycli

= izati € Design Smells —% Encapsulation __Mjssing]—:ncapsulation
Modularization
Unexploited Encapsulation
Hub-like Modularization

| Missing Hierarchy | | Deep Hierarchy |
[onnecessary irarty] [Ropetiow irarty |
Unfactored Hierarchy Broken Hierarchy
Wide Hierarchy Multipath Hierarchy

[specutative Hierarchy | [cyciic Hierarchy |

Some Indicators

27,

Design Principles and Design Patterns

Design Patterns

Each Pattern describes a problem which occurs over and over again in our

environment and then describes the core of the solution to that problem, in such a

way that you can use this solution a million times over, without ever doing it the

same way twice -- Christopher Alexander

Patterns captures {Context, Problem, Solution}

0
What are some of the patterns you can think of? 1.,.

Program to Interface Not Implementation

* One of the most important 00 Design Principles

* “Program to interface” refers to the idea of ensuring loose coupling
* Does not only mean the “Interface”?

» Very useful when lot of changes are expected
* Create an interface, define methods -> create classes that implements them
» Allows external objects to easily communicate

* Maintainability and flexibility increases

i

Design Patterns
Y
Creational Structural

: { Factory (C)

: Absolute Factory (C) Adapter (O)
] Bridge (0) Chain of Responsibility (0) |
: Builder (0) :
3 Composite (O)
: Prototype ()

: | Decorator (O) Iterator (O)
: Singleton (O)
e Facade (0) : Mediator (0) :

Behavioral

i
"

Adapter (C)

Interpreter (C)

Template Method (C)

!
i

Command (0)

Flyweight () i Memento (O) ;
Proxy (O) : Observer (0)] i

C - Scope is Class f See ©
O - Object Scope

|

Strategy (0)

Visitor (O)

Favor Object Composition over Class Inheritance

* Two most common techniques: Inheritance and Composition

¢ (lass inheritance: White-box reuse

* Internals of parent class are visible to child class
* Defined statically at compile time
* Sub class can override methods of parent class

* Inheritance is not always the go to solution - "breaks encapsulation”

* Composition: Black-box reuse

* Objects acquiring references to other objects

* Defined dynamically at run time

* Encapsulation is not broken - Objects are accessed through interfaces
* Get what is needed by assembling and not by creating

23

29

Software Architecture Framework and Patterns

. . Architecture Description
Software Architecture Definitions
ey o e

1

< identifies

e Garlan and Shaw, '93: Eﬁ
Architecture for a specific system may be captured as “a collection of J "
computational components - or simply components - together with a ras

description of the interactions between these components - the connectors ” i

Correspondence
Rule

Correspondence

* Bass et al.:

"The software architecture of a program or computing system is the structure
or structures of the system, which comprise software elements, the
externally visible properties of those elements, and the relationships

govers

between them."
ISO/IEC/IEEE 42010, Systems and Software Engineering — Architecture Description

What about Architectural Tactics? Architectural Patterns

“Characterization of architectural decisions that are used to achieve a Context Problem
desired quality attribute response —

o . . has a o9 g
Recurring Situation Specific description contains
QA

------------------------ »| Authenticator
CP Architectural
resolution, abstracted

Solution

o ——
= '

A
o
X
o
3

<

Deny

Pattern documentation template: {context, problem, solution}

Research Avenues |

Active Research Areas

Software Testing

Model Driven
Engineering

Software Processes

Software
Architecture

Software Verification

Human Aspects

Software
Maintenance and
Evolution

Software
Sustainability

Many More ...
(RE, PL,...)

Research Areas in SERC

Virtual Labs IoT

Programming

Languages Formal Methods

HCI

4

Software
Systems SE and ML Sustainability

Software Analytics Self-adaptive

Some Conferences

s s FSE 2024
" ASE 2024

& \4{ 27t International Conference on
e 0 2 Model Driven Engineering Languages and Systems

- = | il R
€ o) b : | M ///' 7 22 - 27 September 2024
W / M S R 2 O 2 3’ e J Linz , Austria

Il EASE 2024

Mon 2. Frl 6 September 2024 . Evaluation and Assessment in Software Engineering
Parc Hotel Alvisse,llluxembourg, Luxembourg SALERNO.ITALY

Intersection of SA and ML

: Generates
Based on : >

Y

e Software Architecture

Requires

Architecting
principles

]

ooo

ooo

\J
S @ SA and ML -4——ML techniques

v

.

‘ ® ML for SA -

- @ SA for ML

Learning Driven Adaptation

First run ?
No

' !

 Collect execution Get feedback of
n previous decision

Identify adaptation
'_h plan
a N Yes
-+ Analyze the data =
N J + Perform learning

No #
4 h + Verify the plan

+ Generate Forecasts

N Y l
Bad plan ?
<> ves
Possible goal violations l\;o

ﬂ—h Execute adaptatiorJ

ICSA 2019, 2020, ECSA 2019, 2021, [oT 2021... @

SA4ML: Self-adaptive ML and SWITCH

Towards Self-Adaptive Machine Learning-Enabled
Systems Through QoS-Aware Model Switching

Shubham Kulkarni, Arya Marda, Karthik Vaidhyanathan
Software Engineering Research Center, IIIT Hyderabad, India
shubham.kulkarni @research.iiit.ac.in, arya.marda@students.iiit.ac.in, karthik.vaidhyanathan @iiit.ac.in

Abstract—Machine Learning (ML), particularly deep learning,
has seen vast advancements, leading to the rise of Machine
Learning-Enabled Systems (MLS). However, numerous software
engineering challenges persist in propelling these MLS into
production, largely due to various run-time uncertainties that
impact the overall Quality of Service (QoS). These uncertainties
emanate from ML models, software components, and environ-
mental factors. Self-adaptation techniques present potential in
managing run-time uncertainties, but their application in MLS
remains largely unexplored. As a solution, we propose the concept
of a Machine Learning Model Balancer, focusing on managing
uncertainties related to ML models by using multiple models.
Subsequently, we introduce AdaMLS, a novel self-adaptation
approach that leverages this concept and extends the traditional
MAPE-K loop for continuous MLS adaptation. AdaMLS employs
lightweight unsupervised learning for dynamic model switching,
thereby ensuring consistent QoS. Through a self-adaptive object
detection system prototype, we demonstrate AdaMLS’s effective-
ness in balancing system and model performance. Preliminary re-
sults suggest AdaMLS surpasses naive and single state-of-the-art

dels in QoS guar heralding the advancement towards
self-adaptive MLS with optimal QoS in dynamic environments.

Index Terms—Self Adaptation, Self-adaptive systems, Soft-
ware Architecture, ML-Enabled Systems, ML4SA, Unsupervised
Learning, Object Detection

velopers can devise a spectrum of models, each with its
speed and accuracy trade-offs. Recognizing this variability,
we introduce the concept of an ML Model Balancer. This
notion encapsulates the idea of dynamically evaluating and
switching between models to optimize QoS. For instance,
high-traffic situations might favor a faster model, while qui-
eter periods prioritize accuracy. AdaMLS, our novel self-
adaptive approach, operationalizes this concept of the ML
Model Balancer. Nevertheless, AdaMLS consistently excels in
navigating the intricacies of online ML deployments, ensuring
superior QoS. This includes: i) monitoring model and system
parameters; ii) analyzing model and system quality for QoS
violations; iii) using knowledge from lightweight unsupervised
learning to dynamically switch models, ensuring QoS; and iv)
executing system adaptation. Prioritizing ML model adapt-
ability, AdaMLS shifts from conventional load balancing to
QoS-aware dynamic ML model switching. By continuously
tuning model selections in response to environmental cues and
system demands, AdaMLS guarantees MLS QoS, promoting
consistent MLS operation in live settings. This represents a
stride towards future-ready self-adaptive MLS, designed to

ASE 2023

SWITCH

An Exemplar for Evaluating Self-Adaptive ML-Enabled Systems

Description

Addressing runtime uncertainties in Machine Learning-Enabled Systems (MLS) is crucial for maintaining Quality of Service (QoS). The Machine Learning
Model Balancer is a concept that addresses these uncertainties by facilitating dynamic ML model switching, showing promise in improving QoS in MLS.
Leveraging this concept, this paper introduces SWITCH, an exemplar developed to enhance self-adaptive capabilities in such systems through dynamic
model switching in runtime. SWITCH is designed as a comprehensive web service, catering to a broad range of ML scenarios, with its implementation
demonstrated through an object detection use case. SWITCH provides researchers a flexible platform to apply and evaluate their ML model switching
strategies, aiming to enhance QoS in MLS. SWITCH features advanced input handling, real-time data processing, and logging for adaptation metrics.
With its interactive realtime dashboard, SWITCH offers researchers a user-friendly interface for experiment management and system observability for
MLS. This paper details SWITCH's architecture, self-adaptation strategies through ML model switching, and its empirical validation through case study,
illustrating its potential to improve QoS in MLS. By enabling a hands-on approach to study adaptive behaviors in ML systems, SWITCH contributes a
valuable tool to the SEAMS community for research into self-adaptive mechanisms and their practical applications

https://tool-switch.github.io/

SEAMS 2024@ICSE 2024

MLA4SA: GenAl for Architecture Knowledge Management

Can LLMs Generate Architectural Design
Decisions? - An Exploratory Empirical study

Rudra Dhar

Karthik Vaidhyanathan

Vasudeva Varma

Software Engineering Research Centre Software Engineering Research Centre Language Technologies Research Centre

IIT Hyderabad, India
rudra.dhar @research.iiit.ac.in

Abstract—Architectural Knowledge Management (AKM) in-
volves the organized handling of information related to archi-
tectural decisions and design within a project or organization.
An essential artefact of AKM is the Architecture Decision
Records (ADR), which documents key design decisions. ADRs
are documents that capture decision context, decision made and
various aspects related to a design decision, thereby promoting
transparency, collaboration, and understanding. Despite their
benefits, ADR adoption in software development has been slow
due to challenges like time constraints and inconsistent uptake.
Recent advancements in Large Language Models (LLMs) may
help bridge this adoption gap by facilitating ADR generation.
However, the effectiveness of LLM for ADR generation or
understanding is something that has not been explored. To this
end, in this work, we perform an exploratory study which aims
to investigate the feasibility of using LLM for the generation of
ADRs given the decision context. In our exploratory study, we
utilize GPT and T5-based models with 0-shot, few-shot, and fine-
tuning approaches to generate the Decision of an ADR given its
Context. Our results indicate that in a 0-shot setting, state-of-the-
art models such as GPT-4 generate relevant and accurate Design
Decisions, although they fall short of human-level performance.
Additionally, we observe that more cost-effective models like
GPT-3.5 can achieve similar outcomes in a few-shot setting, and
smaller models such as Flan-T5 can yield comparable results
after fine-tuning. To conclude, this exploratory study suggests
that LLM can generate Design Decisions, but further research
is required to attain human-level generation and establish stan-
dardized widespread adoption.

Index Terms—ADR, LLM

IIIT Hyderabad, India
karthik.vaidhyanathan @iiit.ac.in

IIIT Hyderabad, India
vv@iiit.ac.in

been a crucial reason restricting a wider adoption of AKM
approaches, and more research is needed for automatically
capturing this knowledge [3].

An Architecture Decision Record (ADR) is a crucial part
of AKM. It entails the idea that software architecture is
considered a set of Design Decisions [4]. It is a document used
in software development to capture and document important
Architecture Design Decisions (ADD), made during the design
and development of a software system. A detail explanation
is given in Section II Despite the well-established benefits
of ADRs, their adoption has been slow to non-existent as
described by Georg et al. [5]. Unsuccessful adoption of ADRs
in software development can occur due to several factors,
including inadequate tool support, effort needed to capture
Architecture Knowledge (AK), interruptions to the design
process caused by documenting AK, and uncertainty regarding
which AK needs documentation. [5].

Large Language models (LLMs) excel in comprehending
contexts and generating text accordingly. Over the recent years
due to advancement of LLMs, text generation has become
more accessible. This paper delves into the exploration of
whether LLMs can effectively generate Architectural Decision
Records (ADRs). While the prospect of generating entire
ADRs from a codebase remains a task for future endeavours,
the focus of this work is on utilizing LLMs to generate Design
Decisions from decisions Contexts as these are recognized as

~ arnl

ICSA 2024

What Next!

1.

Topics in Software Engineering Course

PhD/Software researcher/MS in Software Engineering
(Erasmus, SE4GD, EDISS, ...)

SDE/Data scientist/ML Engineer/Data engineer.....
Junior architect/software architect/consultant...

Research Software Engineer

Management

Course Logistics I

Thanks to the Wonderful Team!

Ankith Mayush Sai Venu

Seshadri Siddharth
eshadri Shubham 1 ar \ﬁ>(/ '-'D\f/('
way Ay

“Software is not limited by physics, like buildings are. It is
limited by imagination, by design, by organization. In
short, it is [imited by properties of people, not by properties of
the world. We have met the enemy, and he is us”

Ralph Jhonson

Martin Fowler, Who needs an Architect? IEEE Software, 2003

Source: Googe images

Feedback/comments? |

Best Wishes!!

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

