Architectural Styles
& Patterns

CS6.401 Software Engineering

RIC

g led e, @'m@(’/?iy Ee s M\Vd] CGV\TVL

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
sfgg=. https://karthikvaidhyanathan.com

INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

HYDERABAD

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been

gathered/adapted/generate from various sources as well as based on my
own experiences and knowledge -- Karthik Vaidhyanathan

Sources:

1. Software Architecture in Practice, Len Bass, 24, 3rd edition

2. Various sources from the web that has been duly credited in the
respective slide

Software Architecture

The Software Architecture is the earliest model of the whole software system
created along the software lifecycle

* A set of components and connectors communicating through interface
* A set of architecture design decisions

* Focus on set of views and viewpoints

* Developed according to architectural styles

Styles

Software Architectural I

Architectural Styles

Dravidian Architecture

Gothic architecture

Software Architectural Styles

Set of design rules that identify the Kinds of components and
connectors that may be used to compose a system or subsystem,
together with local or global constraints on the way the composition is

done
|[Shaw and Clements, 1996]

https: //www.georgefairbanks.com/blog/architecture-patterns-vs-architectural-styles/

https://www.georgefairbanks.com/blog/architecture-patterns-vs-architectural-styles/

Patterns

Software Architectural |

Architectural Patterns

1. Collection of design decisions found in practice
2. Has known properties that permit reuse
3. Describes a class of architecture

One does not invent patterns, one just discovers them - They are found
in practice

There is never a complete list of patterns

Architectural Patterns

Context Problem
. Generalized,
Recurring Situation —— 459 | description contains
specific QA

I TR r requires a—J

f

Architectural
resolution, abstracted

-

Solution

Pattern documentation template: {context, problem, solution}

Source: Googe images

Pipe and Filter |

The Pipe and Filter Pattern - Intuition

SOURCED APPLIED

Source: workable.com

The Pipe and Filter Pattern

Context Problem

Reusable, loosely coupled
components, simple and
generic interactions

Many systems required to
transform discrete stream of
data. Occur repeatedly in

practice - .
flexibility, resuability

Divide into pipes and filters,
pipes transport, filters
process/transform

Solution

The Pipe and Filter Pattern — Some Use Cases

Data preperation for ML
>
Convert into data Fill missing Perform Convert to .
. o normalized
csv files frame values normalization CSV P

Data Migration

I Sent REST —
Read the SQL Convert data into Create a REST S —
SQL ™ NoSQL
Q record JSON request NoSQL Q

The Pipe and Filter Pattern

. |
Pipe Filter 1 J Pipe—» Filter 2 }‘Pipe—>

Architectural Elements

3
Filter 3 FPipe—»

1. Filter (Component)
Transforms data from input to output

Can execute concurrently, incrementally transform

2. Pipe (Connector)
Single source for input, single target for output

Does not alter data passing through pipe

The Pipe and Filter Pattern

Constraints
1. Pipes connect filter output to filter input
2. Filters must agree on type of data being passed from pipe

3. Specializaiton is more like a linear sequence of actions => Pipelines

Weakness
1. Not good for interactive system
2. Large number of filters can add substantial overhead

3. Not suitable for long running jobs

The Blackboard Pattern - Intuition

Image source: vecteezy.co

The Blackboard Pattern

Context Problem

The partial solutions needs to
Open problem domain with be integrated

various partial solutions
Flexibility, Maintainability,

Decompose the software into
blackboard, knowledge source
and control

Solution

The Blackboard Pattern

} Control

A

KS 1 v)
\ / KS 7

Blackboard

> KS 2

> KS3 / / \
y
o

j t

y

The Blackboard Pattern

Architectural Elements
Blackboard

1. Global repository containing input data and partial solutions

Knowledge Sources (KS)
1. Separate and independent components

2. Contains the knowledge required to solve the problem

Controller

1. Component managing course of problem solving (eg: manage KS)

Relation: Attachment relation (KS’s attached to the blackboard)

The Blackboard Pattern

Constraints
1. No direct communication among the KS

2. Any interaction happens via the blackboard

Weakness
1. Blackboard can become a bottleneck (too many KS)
2. Difficult to determine the paritioning of knowledge

3. Control can be very complex

Publish Subscribe |

Publish Subscribe Pattern - Intuition

Moy opy o Zg
P, g i
(a 'ob;’m%;“ Q) N

3 i ';:‘ “ :’
A ; . __”“"-- wWe R 5. SQusy
. THEMGBHINDU = /@
g{%‘?’“ 5 I Ty g‘ 73 " 5{:{?‘,. 3 ‘
e Supreme Courtstays Mlhabad | g
: : ::::..':.s} 4
Sy : 5 X 2,

High Court verdict on Ayodhya =

1 SUBSCRIBED y \

Who was responsible for the =

g s
3 Py ~
birth of al-Qaeda, asks Gilar” <% 3 e ”
A e
Y MY X
O M KR

Youtube subscription = 25
Newspaper subscription

Image source: google images

The Publish Subscribe Pattern

Context Problem
Number of independant How to create integration
producers and consumers that mechanisms that support
must interact. The number or transmission without coupling
nature of data is not fixed N N
scalability, manageability

Publishers publish information
which can be subscribed to by
the subscribers. Have
connectors to manage

Solution

The Publish Subscribe Pattern

Publisher 1

Publisher 2

Pub/Sub Connector

Publisher 3

Subscriber 1

Subscriber 2

Subscriber 3

Subscriber 4]

Publish-Subscribe Pattern - An Example

Application Frontend Catalog Manager Cart Manager
| | 3
puilish publish pu]illsh
Pub/Sub

subsibe to subscribe to subscribe to

v v

Metrics Server Analytics Logs Collector

Publish-Subscribe Pattern

Architectural Elements
Publisher
Components that produces messages/events

Subscriber
Components that consume the messages/events produced by publisher

Pub-Sub Connector
Component that has announce and listen roles for publishers and subscribers

Relation: Attachment relation associates pub/sub components with the
connectors

Publish-Subscribe Pattern

Constraints

1. All components are connected to a connector (bus or a component)

2.

Restrictions on which component can listen to what

3. A component may be both a publisher and a subscriber

Weakness

1.

2.
3.
4

May increase latency
Can have a negative impact on predictability of message delivery time
Less control on ordering of messages

Delivery of message is not guranteed

The Broker Pattern - Intuition

[can get

you good
one

I need a
health
Insurance

a — iy B

Insurance broker

The Broker Pattern

Context Problem

[How to structure a distributed |

Many systems are collection system such that service users
of distritbuted programs. They need not worry about location
need to exchange information of providers

and be available

availability, interoperability

Seperate user of funtionalities
from provider of functionalities
using an intermediatory
component called broker

Solution

The Broker Pattern

Client

|

Message Broker

() ()

[1N
EREINE

The Broker Pattern

Architectural Elements
Client
Component which is the requester of functionalities/services

Server
Component(s) which is the provider of functionlities/services

Broker
Component that locates appropriate server to fullfill client’s request

Client-side and Server-side proxy
Manages actual communication with the broker

Relation: attachment associates clients and servers with brokersa

The Broker Pattern

Constraints
1. Client can only attach to a broker (potentially via client-side proxy)

2. Server can only attach to a broker (potentially via server-side proxy)

Weakness

1. Brokers can result in performance bottleneck (latency)
Broker can be a single point of failure

Can be subjected to security attack

Adds up-front complexity

[t may be difficult to test

or s W N

Layered Architectural Pattern - Example

! A
L.
Presentation Layer Product Page " Product Manager
<. —-— -
A
: < !
Business Layer - Product Object | ------ v
| -
1 I
| .
] | !
A | y !
Persistence Layer Product Dao Order Dao
A A
: —— :
Database Layer ' |patabase| !

Layered Architectural Pattern

Context Problem

(Modules can be developed and |
evolved seperately with little

Develop and evolove portions of : :
interaction

systems independently. Promote

seperation of concerns. cpe pers -
P modifiability, portability,

reuse

Divide the software into units
called layers. Each layer is a
grouping of modules

Solution

Layered Architectural Pattern

Architectural Elements
Layer
1. Kind of a module

2. Description should define the
what modules it can contain

Relation

1. Allowed to use

The design should always define the
usage rules

Layer A

allowed to use

Y

Layer B

[
allowed to use

v

Layer C

Layered Architectural Pattern

Constraints
1. Every piece of software is exactly allocated to one layer
2. There are atleast two layers (often more!)

3. Allowed to use relations should be acyclic

Weakness
1. The addition of layers adds up-front cost and complexity

2. Performance bottlenecks

Layered Architectural Pattern - Sommon Issues

One of the most commonly used patterns -
still people get it wrong!

1. Define proper relations with key (which
layer can use what)

2. Stack of boxes lined up does not belong
to layered

3. Alayer isn’t allowed to use any layer
above it.

Presentation

:

Business Logic

y

Data Access

;

‘ Database \

Monolith?

Monolith of Utah, USA Menhir (monolith), France Ponce Monolith, Bolivia

Monolithic Approach to E-commerce

Organizational

Ca
\
STt
UI Developers/
App developers

e
N/
St

App backend team(s)

VIS
"
-'_(' ﬁ.‘.

DB Administrators

Architecture

HTML/CSS
and JS

ClllillOll .
JH]

1

Android/iOS

Java/.NET/ User
manager

)

Catalog Order
manager manager

Payment
' —— manager

Oracle/MySQL/..

User Catalog

Payment

Deployment

Application
webserver
(for web)

Backend
server

w| Database
S=—1 server

Monolithic Approach - What are some pitfalls?

* High degree of coupling - everyone needs to know everything !!!

* Change cycle and bug fix can take weeks - Modifiability and time to
market

* Adding new feature can be challenging - Extensibility

* Separation of concerns via components with inherent coupling -
Modularity

* Scaling system implies scaling the whole stack - Scalability

* Limited by the language of choice - eg: add recommendation feature to e-
commerce (Java or Python ?7)

* Database is centralized - addition or modification is a costly process

Monolith has its own advantages too!

Service-Oriented |

The Service-Oriented Pattern

Context Problem

How to provide support for

A number of services offered by interoperability among different
service providers and consumed by components running in different
service consumers. Service consumer platforms implemented in different

should be able to use services without languages

knowing detailed implementation o)
availability, performance, security

Collection of loosely coupled services
with clearly defined interfaces. Can be
implemented in different languages.
Supports commmunication between and
to/from services

Solution

The Service Oriented Pattern

Service Consumer/client Orchestration
Engine

Enterprise Service Bus

Service Registry

A

\4 \4 Y

Service 1 Service 2 Service 3
(Provider) (Provider) (Provider)

SOA Pattern - Architectural Elements (Components)

1. Service Providers: Components that provide 1 or more services through defined
interfaces

2. Service Consumers: Invoke services directly or through intermediary
3. ESB: Intermediary component that can route and transform messages

4. Service Registry: Providers can register services, consumers can discvoer
services

5. Orchestration Server: Coordinates interaction between consumers and providers
based on languages

SOA Pattern - Architectural Elements (Connectors)

1. SOAP Connector: SOAP Protocol for synchronous communication over HTTP
2. REST Connector: Relies on request/response operations over HTTP

3. Asynchronous messaging connector: For point-to-point asynchronous message
exchanges or pub-sub exchanges

SOA Applied to E-Commerce

Overhead!!

User Third Party
(Service > (Catalog Serv1ce> C Order Service > (Sorre () >

User Product Order
database database database

SOA Pattern

Relations
Attachments of different components to available connectors

Constraints

1. Service consumers are connected to providers (ESBs or other intermediary
component may be used)

Weakness
1. Complex to build
2. Performance bottlenecks due to middleware

3. Performance gurantees are usually not met

Time to Evolve: Microservices |

S P N

SOA Pattern - Architectural Elements (Connectors)

__
s N
4 N

U

~

.,

Domain Driven Design Large-Scale Systems Continuous Delivery
Small Autonomous Teams

Microservices

\

N - -

Moving Towards Microservices

QY O
I B

MONOLITHIC SOA MICROSERVICES
Single unit Coarse-grained Fine-grained

1990 2000 2010

Microservices: What does it Mean?

“Small autonomous services that work together” -- Sam Newman

“It is an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms, often an

HTTP resource API” -- Martin Fowler

Microservices: What does it Mean?

Monolithic Version

HTML/CSS |:===
and JS EE@

Microservices Version

User
Manager

Java/.NET/ g

J

(

Catalog
manager

=

Order
manager

=

Payment
manager

Oracle/MySQL/..

User

Catalog

Order

Payment

API Gateway

. i i/ Registration \
Service

| reg db |

..................................

..................................

...

..

| auth db I

..

..

Billing Delivery Payment
Service Service Service

..

:(‘Authentication) : : Product
Service : ¢\ display service/ : :

product db

Product :
rating service / : :

[delivery db | [paymentdb |

Microservices: What does it Mean?

A monolithic application puts all its -' A microservices architecture puts '
functionality into a single process... & each element of functionality into a
o9V separate service...

... and scales by replicating the

... and scales by distributing these services
monolith on multiple servers

across servers, replicating as needed.

o’ o’ o[l *ifl (]| *®

@
oV

@
L 4

9
We

oV

L 4

Source: https://martinfowler.com/articles/microservices.html

&

&

4

https://martinfowler.com/articles/microservices.html

Microservices: Who Uses Them?

v) TR
e A I e
—h e A "

-
(s

NETFLIX amazoncom

Source: http://tinyurl.com/3kswbtak, Google images, Twitter

http://tinyurl.com/3kswbtak

Amazon’s API Mandate

Jeff Bezos,
Founder and President, Amazon

1. All teams will henceforth expose their data and functionality
through service interfaces.

2. Teams must communicate with each other through these
interfaces.

3. There will be no other form of interprocess communication
allowed: no direct linking, no direct reads of another team’s data
store, no shared-memory model, no back-doors whatsoever. The
only communication allowed is via service interface calls over the
network.

4. It doesn’t matter what technology they use. HTTP, Corba, Pubsub,
custom protocols — doesn’t matter.

5. All service interfaces, without exception, must be designed from
the ground up to be externalizable. That is to say, the team must
plan and design to be able to expose the interface to developers in
the outside world. No exceptions.

6. Anyone who doesn'’t do this will be fired.

/. Thank you; have a nice day!

Letter from Jeff Bezos in 2002: https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/

https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/

Microservices: Key Advantages

Scaling is Easy

* Scale only the required microservices
* Adding a new feature can be just adding one another microservice

Heterogeneity

* Each microservice can be developed in different technologies
* Experimenting with new technology is easy

Resilience

* Only specific microservices goes down
» Grouping microservices as critical and non-critical can be done to add more
resilience

Microservices: Key Advantages

Organizational Alignment

* Easily distribute teams around microservices - eg: Amazon 2 pizza rule
* Minimize people working on one less codebase

Composability
* Easily compose microservices to get new functionality
Replaceability

* Cost of replacement is small - should not take more than 2 weeks
* Imagine replacing a 25 year old legacy system !!

Ease of Deployment

* Check and rollback easily
* Continuous integration and deployment is easier - DevOps!!!

Microservices?

How to identify I

Main Takeaways

 Architectural Pattern serves as guidelines
* Always be aware of trade-offs

* A complex system can consists of multiple architectur:

* Think about an IoT system, e-commerce system or any
production system

http://basementdesigner.com/basement-finishing-102/light-bulb-idea/
https://creativecommons.org/licenses/by/3.0/

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

