
Architectural	Styles	
&	Patterns	

CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The	materials	used	in	this	presentation	have	been	
gathered/adapted/generate	from	various	sources	as	well	as	based	on	my	
own	experiences	and	knowledge	-- Karthik	Vaidhyanathan

Sources:
1. Software	Architecture	in	Practice,	Len	Bass,	2nd,	3rd edition
2. Various	sources	from	the	web	that	has	been	duly	credited	in	the	

respective	slide



Software	Architecture

The	Software	Architecture	is	the	earliest	model of	the	whole	software	system
created	along	the	software	lifecycle

• A	set	of	components	and	connectors	communicating	through	interface	in
• A	set	of	architecture	design	decisions
• Focus	on	set	of	views	and	viewpoints
• Developed	according	to	architectural	styles



Software	Architectural	
Styles



Architectural	Styles

Source:	archdaily.com,	wikipedia

Classic	architecture

Gothic	architecture

Dravidian	Architecture

Romanesque	Architecture



Software	Architectural	Styles

Set of design rules that identify the kinds of components and
connectors that may be used to compose a system or subsystem,
together with local or global constraints on the way the composition is
done

[Shaw	and	Clements,	1996]

https://www.georgefairbanks.com/blog/architecture-patterns-vs-architectural-styles/

https://www.georgefairbanks.com/blog/architecture-patterns-vs-architectural-styles/


Software	Architectural	
Patterns



Architectural	Patterns

1. Collection	of	design	decisions	found	in	practice	
2. Has	known	properties	that	permit	reuse
3. Describes	a	class	of	architecture	

One	does	not	invent	patterns,	one	just	discovers	them	– They	are	found	
in	practice	

There	is	never	a	complete	list	of	patterns	



Architectural	Patterns

Source:	Googe	images

Pattern	documentation	template:	{context,	problem,	solution}



Pipe	and	Filter



The	Pipe	and	Filter	Pattern	- Intuition

Source:	workable.com



The	Pipe	and	Filter	Pattern



The	Pipe	and	Filter	Pattern	– Some	Use	Cases

Data	preperation	for	ML

Data	Migration



The	Pipe	and	Filter	Pattern

Architectural	Elements

1.	Filter	(Component)
Transforms	data	from	input	to	output
Can	execute	concurrently,	incrementally	transform

2.	Pipe	(Connector)
Single	source	for	input,	single	target	for	output
Does	not	alter	data	passing	through	pipe



The	Pipe	and	Filter	Pattern

Constraints
1.	Pipes	connect	filter	output	to	filter	input
2.	Filters	must	agree	on	type	of	data	being	passed	from	pipe
3.	Specializaiton	is	more	like	a	linear	sequence	of	actions	=>	Pipelines

Weakness
1. Not	good	for	interactive	system
2. Large	number	of	filters	can	add	substantial	overhead
3.				Not	suitable	for	long	running	jobs



Blackboard



The	Blackboard	Pattern	- Intuition

Image	source:	vecteezy.com



The	Blackboard	Pattern



The	Blackboard	Pattern	



The	Blackboard	Pattern	
Architectural	Elements
Blackboard
1. Global	repository	containing	input	data	and	partial	solutions

Knowledge	Sources	(KS)
1. Separate	and	independent	components
2. Contains	the	knowledge	required	to	solve	the	problem

Controller
1. Component	managing	course	of	problem	solving	(eg:	manage	KS)

Relation:	Attachment	relation	(KS’s	attached	to	the	blackboard)



The	Blackboard	Pattern	

Constraints
1. No	direct	communication	among	the	KS
2. Any	interaction	happens	via	the	blackboard

Weakness
1. Blackboard	can	become	a	bottleneck	(too	many	KS)
2. Difficult	to	determine	the	paritioning	of	knowledge
3. Control	can	be	very	complex



Publish	Subscribe



Publish	Subscribe	Pattern	- Intuition

Newspaper	subscription

Youtube	subscription

Image	source:	google	images



The	Publish	Subscribe	Pattern



The	Publish	Subscribe	Pattern	



Publish-Subscribe	Pattern	– An	Example	



Publish-Subscribe	Pattern	
Architectural	Elements
Publisher
Components	that	produces	messages/events	

Subscriber
Components	that	consume	the	messages/events	produced	by	publisher

Pub-Sub	Connector
Component	that	has	announce	and	listen	roles	for	publishers	and	subscribers

Relation:	Attachment	relation	associates	pub/sub	components	with	the	
connectors



Publish-Subscribe	Pattern	
Constraints
1. All	components	are	connected	to	a	connector		(bus	or	a	component)
2. Restrictions	on	which	component	can	listen	to	what
3. A	component	may	be	both	a	publisher	and	a	subscriber

Weakness
1. May	increase	latency
2. Can	have	a	negative	impact	on	predictability	of	message	delivery	time
3. Less	control	on	ordering	of	messages
4. Delivery	of	message	is	not	guranteed



Broker



The	Broker	Pattern	- Intuition

Insurance	broker

I	need	a	
health	

insurance

I	can	get	
you	good	
one

Option	1

Option	2

Option	3



The	Broker	Pattern



The	Broker	Pattern



The	Broker	Pattern	
Architectural	Elements
Client
Component	which	is	the	requester	of	functionalities/services

Server
Component(s)	which	is	the	provider	of	functionlities/services

Broker
Component	that	locates	appropriate	server	to	fullfill	client’s	request

Client-side	and	Server-side	proxy
Manages	actual	communication	with	the	broker

Relation:	attachment	associates	clients	and	servers	with	brokersa



The	Broker	Pattern	
Constraints
1. Client	can	only	attach	to	a	broker	(potentially	via	client-side	proxy)
2. Server	can	only	attach	to	a	broker	(potentially	via	server-side	proxy)

Weakness
1. Brokers	can	result	in	performance	bottleneck	(latency)
2. Broker	can	be	a	single	point	of	failure
3. Can	be	subjected	to	security	attack
4. Adds	up-front	complexity
5. It	may	be	difficult	to	test



Layered



Layered	Architectural	Pattern	- Example



Layered	Architectural	Pattern	



Layered	Architectural	Pattern	
Architectural	Elements	
Layer
1. Kind	of	a	module
2. Description	should	define	the	

what	modules	it	can	contain

Relation
1. Allowed	to	use	
The	design	should	always define	the
usage	rules



Layered	Architectural	Pattern

Constraints
1. Every	piece	of	software	is	exactly	allocated	to	one	layer
2. There	are	atleast	two	layers	(often	more!)
3. Allowed	to	use	relations	should	be	acyclic

Weakness
1. The	addition	of	layers	adds	up-front	cost	and	complexity
2. Performance	bottlenecks



Layered	Architectural	Pattern	– Sommon	Issues

One	of	the	most	commonly	used	patterns	–
still	people	get	it	wrong!

1. Define	proper	relations	with	key	(which	
layer	can	use	what)

2. Stack	of	boxes	lined	up	does	not	belong	
to	layered

3. A	layer	isn’t	allowed	to	use	any	layer	
above	it.	



Monolith?

Monolith	of	Utah,	USA Menhir	(monolith),	France Ponce	Monolith,	Bolivia



Monolithic	Approach	to	E-commerce
Organizational

Architecture
Deployment



Monolithic	Approach	– What	are	some	pitfalls?

• High	degree	of	coupling	- everyone	needs	to	know	everything	!!!
• Change	cycle	and	bug	fix	can	take	weeks	- Modifiability	and	time	to	
market
• Adding	new	feature	can	be	challenging	- Extensibility
• Separation	of	concerns	via	components	with	inherent	coupling	-
Modularity
• Scaling	system	implies	scaling	the	whole	stack	- Scalability
• Limited	by	the	language	of	choice	- eg:	add	recommendation	feature	to	e-
commerce	(Java	or	Python	?)
• Database	is	centralized	- addition	or	modification	is	a	costly	process
Monolith	has	its	own	advantages	too!



Service-Oriented



The	Service-Oriented	Pattern



The	Service	Oriented	Pattern



SOA	Pattern	- Architectural	Elements	(Components)
1.	Service	Providers:	Components	that	provide	1	or	more	services	through	defined	
interfaces

2.	Service	Consumers:	Invoke	services	directly	or	through	intermediary

3.	ESB:	Intermediary	component	that	can	route	and	transform	messages

4.	Service	Registry:	Providers	can	register	services,	consumers	can	discvoer	
services

5.	Orchestration	Server:	Coordinates	interaction	between	consumers	and	providers	
based	on	languages



SOA	Pattern	- Architectural	Elements	(Connectors)

1.	SOAP	Connector:	SOAP	Protocol	for	synchronous	communication	over	HTTP

2.	REST	Connector:	Relies	on	request/response	operations	over	HTTP

3.	Asynchronous	messaging	connector:	For	point-to-point	asynchronous	message	
exchanges	or	pub-sub	exchanges



SOA	Applied	to	E-Commerce

Overhead!!



SOA	Pattern	
Relations
Attachments	of	different	components	to	available	connectors

Constraints
1.	Service	consumers	are	connected	to	providers	(ESBs	or	other	intermediary	
component	may	be	used)

Weakness
1. Complex	to	build
2. Performance	bottlenecks	due	to	middleware
3. Performance	gurantees	are	usually	not	met



Time	to	Evolve:	Microservices



SOA	Pattern	- Architectural	Elements	(Connectors)

Domain	Driven	Design Large-Scale	Systems Continuous	Delivery

Infrastructure	Automation Small	Autonomous	Teams

Microservices



Moving	Towards	Microservices

1990 2000 2010



Microservices:	What	does	it	Mean?

“Small	autonomous	services	that	work	together” -- Sam	Newman

“It	is	an	approach	to	developing	a	single	application	as	a	suite	of	small	services,	each	
running	in	its	own	process	and	communicating	with	lightweight	mechanisms,	often	an	
HTTP	resource	API” -- Martin	Fowler



Microservices:	What	does	it	Mean?

Monolithic	Version Microservices	Version



Microservices:	What	does	it	Mean?

Source:	https://martinfowler.com/articles/microservices.html

https://martinfowler.com/articles/microservices.html


Microservices:	Who	Uses	Them?

Source:	http://tinyurl.com/3kswbtak,	Google	images,	Twitter

http://tinyurl.com/3kswbtak


Amazon’s	API	Mandate

Jeff	Bezos,
Founder	and	President, Amazon

Letter	from	Jeff	Bezos	in	2002:	https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/

https://nordicapis.com/the-bezos-api-mandate-amazons-manifesto-for-externalization/


Microservices:	Key	Advantages

Scaling	is	Easy

• Scale	only	the	required	microservices
• Adding	a	new	feature	can	be	just	adding	one	another	microservice

Heterogeneity

• Each	microservice	can	be	developed	in	different	technologies
• Experimenting	with	new	technology	is	easy

Resilience

• Only	specific	microservices	goes	down
• Grouping	microservices	as	critical	and	non-critical	can	be	done	to	add	more	
resilience



Microservices:	Key	Advantages

Organizational	Alignment

• Easily	distribute	teams	around	microservices	- eg:	Amazon	2	pizza	rule
• Minimize	people	working	on	one	less	codebase

Composability

• Easily	compose	microservices	to	get	new	functionality

Replaceability

• Cost	of	replacement	is	small	- should	not	take	more	than	2	weeks
• Imagine	replacing	a	25	year	old	legacy	system	!!

Ease	of	Deployment

• Check	and	rollback	easily
• Continuous	integration	and	deployment	is	easier	- DevOps!!!



How	to	identify	
Microservices?



Main	Takeaways

• Architectural	Pattern	serves	as	guidelines	

• Always	be	aware	of	trade-offs

• A	complex	system	can	consists	of	multiple	architectural	patterns	

• Think	about	an	IoT	system,	e-commerce	system	or	any	complex	
production	system

This	Photo by	Unknown	Author	is	licensed	under	CC	BY

http://basementdesigner.com/basement-finishing-102/light-bulb-idea/
https://creativecommons.org/licenses/by/3.0/


Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

