
Software	Modeling:	
An	Overview

CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/


Acknowledgements

The materials used in this presentation have been gathered/adapted/generate
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:
1. Introduction	to	MDE,	Ludovico	Iovino,	GSSI,	Italy
2. UML@Classroom,	An	Introduction	to	Object-Oriented	Modeling by	Martina	

Seidl,	Marion	Scholz,	Christian	Huemer and	Gerti Kappel
3. UML	Modelling	lecture,	Dr. Raghu,	IIIT	Hyderabad

Source:	Googe	images

2



What	is	a	Model?

3



Let	us	consider	a	real	system

Image	Source:	machinedesign.com

4



Let	us	now	consider	a	model	of	the	system
"The	brain	does	much	more	than	recollect.	It	compares,	synthesizes,	analyzes,	
generates	abstractions.”

-- Carl	Sagan	

Model	is	a	simplification	of	a	reality.	In	other	words,	it	is	a	blueprint	of	the	system
Image	source:	Google	images,	mathworks

Model	from	the	engineers
Model	from	the	designers

5



Modelling	can	serve	more	purpose

Checking	if	the	traffic	signs	are	followed	

Checking	collision	avoidance

Image	source:	carsim website

In	essence	models	can	be	simulated	with	tools	
to	perform	analysis

6



So	what	is	a	software	model?
A	simplified	or	partial	representation	of	a	real	system,	defined	in	
order	to	accomplish	a	task	or	to	reach	an	agreement.

Mapping:	A	model	is	always	a	mapping	of	some	real	system
Reduction:	A	model	reflects	only	relevant	set	of	properties	of	original	system
Pragmatism:	A	model	needs	to	be	usable	in	place	of	the	actual	system	with	
respect	to	some	purpose	

System ModelRepresents

7



Quality	of	Model

As	per	Bran	Selic,	five	characteristics	determine	model’s	quality

• Abstraction:	A	model	should	be	reduced	version	of	system	[Omit	unwanted]
• Understandability:	Should	be	as	intuitive	as	possible
• Accuracy:	Reflect	relevant	properties	as	close	to	reality	as	possible
• Predictiveness:	Enable	prediction	of	interesting	properties	of	system
• Cost-effectiveness:	Cheaper	to	create	models	than	the	system

8



Glimpse	into	world	of	
Model-driven	Engineering

9



Model	Driven	Software	Engineering
Shifting	focus	from	code	centric	techniques	to	models

10



What	is	MDE?	– Key	Motivation
Models	as	a	sketch
• Communication	of	ideas
• Objective:	Modeling	per	se

Models	as	guidelines/blueprint
• Design	decisions	are	documented
• Objective:	instrumentation	for	implementation

Models	as	executable	programs
• Generate	code	automatically
• Objective:	models	are	source	code	and	vice	versa	

11

Sosym journal

Models	conference

Image	source:	models	and	sosym website



What	to	Model?

12



Multiple	ways	to	think	about	it

Algorithmic	Perspective
• Main	block	of	building	the	software	is	procedure	or	function
• Scale	and	new	features	affects	maintainability	and	reasoning

Object	oriented	Perspective
• Main	building	block	of	all	software	system	is	object	or	class
• Contemporary	view	of	software	development

13



Object	Oriented	Modeling	

• Model	system	as	a	collection	of	objects	that	interact	with	each	other

• Tries	to	captures	the	real-world	scenario
• Everything	is	an	object
• Has	a	state and	behavior:	(Happy,	angry)…(speaking	softly,	yelling…)
• Can	you	model	a	person?

• Software	objects	are	similar	to	real	world	objects:
• Store	state	in	fields	(variables)
• Behavior	through	methods	(functions)

14



Objects	vs	Classes

Real	world Modelling	World

Object	 Object	represents	anything	
that	can	be	distinctly	identified	

An	object	has	identity,	state	and	
behavior

Class Represents	set	of	objects
with	similar	characteristics	
and	behavior

It	characterizes	
the	structure	of	states	and	
behaviors	shared	by	its	
instances.

Object	is	like	a	variable	of	a	class 15



Key	Characteristics	

• Abstraction:	Hide	irrelevant	details	(eg:	Coffee	machine)
• Encapsulation:	Protection	against	unauthorized	access	(eg:	Organization)
• Relationships
• Inheritance:	Derive	classes	from	existing	classes	(eg:	Real	life	inheritance!!)
• Association:	Relation	between	two	classes		(Aggregation,	composition)
• Dependency:	Some	form	of	dependency	between	two	classes

16



How	to	Model?	

17



How	do	you	interpret	this?

1 2

• 2	comes	after	1
• 2	depends	on	1
• 1	specializes/refines	2
• 2	listens	to	1
• 1	contains	2
… 18



Can	you	create	a	model?

Think	of	a	course	management	system	like	moodle.	Can	you	create	a	model	
for	the	same?

Just	use	whatever	knowledge	you	have,	any	type	of	diagram	as	per	your	
knowledge	is	fine	– Give	a	try!!

19



Modeling	Languages
Largely	classified	into	two	types
• Domain-Specific	Languages	(DSLs)
• Languages	designed	to	model	a	certain	domain	
• Examples:	HTML,	SQL,	etc.

• General	Purpose	Modeling	Languages	(GPLs)
• Languages	can	be	applied	to	any	domain	for	modeling	
• Examples:	UML,	XML,	etc.

20
Wait	is	this	similar	to	low	code/no	code?



Some	Examples	

AWS	Honeycode

Azure	Machine	Learning	Studio

Source:	AWS,	Azure	(Microsoft	Tech	Community)
21



Some	Examples		- We	can	create	our	own	too

Source:	CAPS.disim.univaq.it,	ThingML presentation@Models2018

CAPS	modeling	for	IoT
ThingML modeling	

22



In	the	Context	of	Our	Course
(GPL	– UML)	

23



Unified	Modeling	Language	(UML):	Brief	History

• No	common	language	to	model	until	1996
• GPL	developed	by	industry	consortium	in	1997

• Introduction	of	OOP	in	IT	dates	back	to	1960’s
• Required	a	standard	representation:	OMG
• Three	Amigos:	Grady	Booch,	Ivar	Jacobson	and	James	Rumbaugh

• Based	on	multiple	prior	visual	modeling	languages
• Goal	was	to	have	a	single	language	that	could	cover	large	number	
of	SE	tasks
• Current	version	of	UML:	2.5.1	(as	of	Dec	2017)

Image	source:	Wikimedia	commons https://www.omg.org/spec/UML/ 24

https://www.omg.org/spec/UML/


Unified	Modeling	Language	(UML)

• Notation	for	OO	Modeling
• Use	object	orientation	as	basis
• Model	a	system	as	collection	of	objects	that	interact	with	each	
other

• Graphical	diagrams	as	a	way	to	model	systems
• More	clear	(imprecise)	than	natural	language	(too	detailed)
• Capture	an	overall	view	of	the	system
• Independent	of	language	or	technology

25



What	UML	is	not?

• Not	an	OO	Method	or	Process
• Not	a	visual	programming	language	
• Not	a	tool	specification	

26



UML	Diagrams	

• 14	different	diagrams
• Structure	diagrams
for	capturing	static	aspects	
of	system
• Behavior	diagrams
for	capturing	dynamic	
aspect	of	system

Image	source:	UML@classroom
27



Static	Vs	Dynamic	Models

Static	Model
• Describes	the	static	structure	of	a	system
• One	of	the	most	common	diagrams:	class	diagrams

Dynamic	Model
• Captures	the	dynamic	behavior	of	a	system
• Developed	with	help	of	state	chart	diagrams,	sequence	diagrams,	etc.

28

In	this	unit:	class	diagram	(static)	and	sequence	diagram	(dynamic)



UML	Class	Diagram

29



UML	Class	Diagram

• Most	common	diagram	in	OO	modeling
• Captures	the	static	structure	of	a	system
• Intuitively	it	is	like	a	graph
• Nodes	represent	the	classes
• Links	represent	the	relationship	among	classes
• Inheritance
• Association	(aggregation,	composition)
• Dependency

30



UML	Class	Diagram:	Notation	

Consists	of	three	compartments

Class	name		- Pascal	Casing,	Singular	noun,		domain	vocabulary

Fields/Attributes	(state)	- camel	casing,	name	and	type	at	basic	level

Methods/operations	(behavior)	– camel	casing,	name,	parameters,	return	value

31



UML	Class	Diagram:	Always	make	use	of	abstraction

• Model	has	to	be	clear	and	understandable
• Detail	with	respect	to	the	stage	of	software
development	process
• More	low	level	analysis	and	
development	requires	detailed	
information

32



UML	Class	Diagram:	Specifying	Attributes	and	Methods

Name	and	Symbol Description

public	(+) Access	by	objects	of	any	class

Private	(-) Access	only	within	the	object

Protected	(#) Access	by	objects	of	same	
classes	or	sub-classes

Package	(~) Access	by	objects	of	the	
classes	which	are	in	same	
package

33



Create	a	class	diagram	for	the	following	code

34



Interface	and	Notation	for	Interfaces

• In	simple	terms	it’s	a	contract	mechanism
• Mechanism	to	achieve	abstraction,	group	classes,	enforcer	– No	
instance	variables	only	constants
• Class	can	implement	an	interface	– “implements”	keyword	(Java)

• Vehicles	can	implement	Gear	interface
35



Notation	for	Objects

• Box	with	one	or	two	compartments
• Remember	to	mention	the	class	name

36

First	part	has	object	name	and	corresponding	class	name
Second	part	has	list	of	fields	and	values



Models	and	Meta	models	

• Models	of	models
• Defines	the	rules	for	the	different	
models	
• For	eg:	a	class	needs	to	be	
defined	in	a	particular	way

37



Time	to	be	Creative

Let’s	assume	that	we	want	to	build	a	course	management	
portal	(think	of	moodle),	what	could	be	some	of	the	classes		
the	corresponding	attributes	and	methods?	Can	you	think	
of	some	interfaces?

38



Modeling	Relationships
using	UML

39



Three	main	relationships	between	classes

• Dependency
• Class	A	uses	Class	B

• Associations
• Class	A	affects	Class	B
• Types:	Aggregation	and	Composition

• Generalization
• Class	A	is	a	kind	of	Class	B

40



Inheritance	in	Java

• Object	acquires	properties	and	behavior	of	parent	object
• Create	new	classes	based	on	existing	classes
• Derive	classes	from	existing	classes	(”extends”	keyword)
• Parent	class/super	class	– Class	from	which	other	classes	are	derived	
• Child	class/sub	class	– Class	that	is	derived	from	existing	class

• Object class	is	the	parent	class	for	every	class	in	java	
(java.lang.package)
• Eg:	Vehicle	class	can	be	parent	of	car,	bikes,	etc.
• Each	car,	bike	can	themselves	be	parent	class	for	child	classes	– How?

41



Inheritance	in	UML

• UML	provides	easy	ways	to	represent	inheritance
• Extension	is	called	specialization	and	generalization
• Implementation	is	called	realization

Extension	of	classes Realization	of	interfaces
42



More	Concrete	Example

43



Time	to	be	Creative

Draw	a	UML	diagram	showing	possible	inheritance	relationship	
between	different	types	of	students	in	the	class.	What	will	be	the	
abstract	class	(es)?

Hint:	We	have	B.Tech,	M.Tech,	…..

44



Association	

45

• Model	links	between	instances	of	classes
• Identify the communication	partners
• Use association	names	and	reading	directions	(solid	arrowhead)	
for	labeling

What	kind? What	about	multiplicity?

Professors	gives	lecture



Association	– Navigability	and	Multiplicity

46

• Cardinality	of	the	class	in	relation	to	the	another	- Multiplicity
• Navigation from one to another is possible – Navigability
• Navigability - Indicates	who	can	access	what	(not	reading	direction)
• Usual assumption:	Bidirectional	navigability

Bidirectional Professor	class	cannot	access	public	
parameters/methods	of	student



Association	– Few	more	things	

• May	have	optional	role	name
• Multiplicity specification is not always	mandatory
• min…max:	closed	(inclusive)	range	of	integers
• n:			single	integer
• 0..*:	entire	set	of	non-negative	integers

47



Aggregation

• Special	form	of	association		- Parts-whole	relationship
• Used	to	express	that	a	class	is	part	of	another	(hollow	diamond)
• Combination	of independent	objects (eg: Program	and	course)

48

Represented	by	a	hollow	diamond

Another	example



Composition

• Dependency	between	composite	objects	and	its	parts
• If the composite object is deleted, the parts are also deleted
• One part can be contained in at	most	one composite	object	at	a	time
• Max multiplicity at the aggregating end is 1	(closed	diamond	representation)

49

Building	is	composed of	multiple	rooms Adding	centers	from	Institute



Dependency

• One	class	uses	another	class	<<uses>	relationship
• There is no conceptual	link	between	the	objects	of	the	classes
• One may refer the other or vice versa

50



Modeling	the	Dynamic
Aspects: Sequence Diagram	
[Interaction	Diagram]

51



Sequence	Diagram
• Captures	the	dynamic	behavior
• Two	dimensional-diagram
• Horizontal:	Involved	interaction
• Vertical: Chronological order of the interaction

• Interaction => sequence	of	event	specifications

52
Image	source:	uml@classroom

object

lifeline

return	message

event

receive	event
send	event



Sequence	Diagram	– Main	Message	types
• Synchronous	Message
• Sender	waits	till	the	return	message	
is	received	before	next

• Asynchronous	Messages
• Sender does	not	wait	for	response	message

• Response	message
• Not	mandatory	in	obvious	situations	



Sequence	Diagram	– Combined	Fragments
• Model control structures explicitly
• UML sequence diagram	supports	12	operators.	Three	groups
• Branches	and	loops,	Concurrency	and	order,	Filters	and	Assertions	

operator operand



Different Operators

Name	and	Operator Use
Alternative	(alt) Express	alternative	execution	(if-else)
Optional	(opt) Fragment	executes	based	on	guard	condition	(if)
Break	(break) Execution	of	a	fragment	when	break	condition	is	met
Loop	(loop) Repeated	execution	of		a	fragment
Sequential	(seq) Weak	ordering	(default	model)
Strict	(strict) Interaction	with	strict	order
Parallel	(par) Concurrent	execution	of	sub-scenarios
Critical	(critical) Atomic	interactions	(no	other	interactions	can	affect)
Ignore	(ignore) Irrelevant	messages	(insignificant	messages	at	runtime)
Consider	(consider) Important	messages	of	the	interactions
Negate	(neg) Model	invalid	interactions,	undesirable	situations
Assert	(assert) To	assert	certain	interactions	(mandatory)



Sequence	Diagram	– Example



57



Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

