
Refactoring:	An	
Introduction

CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generate
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Refactoring,	Improving	the	design	of	existing	code,	Martin	Fowler	et	al.,	2000
2. Refactoring for Software design Smells, Girish Suryanarayana et al.
3. martinfowler.com
4. Few articles by Ipek Ozkaya and Robert Nord, SEI, CMU

2

https://martinfowler.com/

As	a	program	is	evolved,	its	complexity	increases	unless	work	is	done	
to	maintain	or	reduce	it

-- Lehmans’ Law	of	Increasing	Complexity

3

Few	Examples	to	Begin	with..

4

Do	you	see	some	issues	here?

Few	Examples	to	Begin	with..

5

What	about	this?

Ever	heard	about	Technical	
Debt?

6

What	is	Debt?

7
Source:	Google	dictionary	- Oxford,	entrepreneur.com

Technical Debt

8
Image	source:	medium,	google	images

Technical	Debt	- Definition

9

Technical debt is the debt that accrues when you knowingly or
unknowingly makewrong or non-optimal design decisions
Metaphor	coined	by	Ward	Cunningham,	1992

Types	of	Technical	Debt

10

Design	Stamina	Hypothesis

11
source:	martinfowler.com

Impact	of	Technical	Debt

12

“One	large	North	American	bank	learned	that	its	more	than	1,000	systems	and	
applications	together	generated	over	$2	billion	in	tech-debt	costs”	-McKinsey	

• Interest	is	very	much	compounding	in	nature	– changes	has	to be	done	
on	already	existing	debt
• Cost	of Change becomes extremely	high!
• Affects morale of development team
• Huge	impact	on	progress	of	the	business	– product	and	feature	delays
• Often considered	as	the	digital	dark	matter!

Source:	https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

Impact	of	Technical	Debt	– An	Example	Scenario

13

A	successful	company	in	the	maritime	equipment	industry	successfully	evolved	its	
products	for	16	years,	in	the	process	amassing	3	million	lines	of	code.	Over	these	16	
years,	the	company	launched	many	different	products,	all	under	warranty	or	
maintenance	contracts;	new	technologies	evolved;	staff	turned	over;	and	new	
competitors	entered	the	industry.
The	company's	products	were	hard	to	evolve.	Small	changes	or	additions	led	to	large	
amounts	of	work	in	regression	testing	with	the	existing	products,	and	much	of	the	
testing	had	to	be	done	manually,	over	several	days	per	release.	Small	changes	often	
broke	the	code,	for	reasons	unsuspected	by	the	new	members	of	the	development	
team,	because	many	of	the	design	and	program	choices	were	not	documented.

Source: Ozkaya, I. and Nord, R. . 2019: Managing the Consequences of Technical Debt: 5 Stories from the Field. Carnegie Mellon University's Software Engineering Institute
Blog,. https://doi.org/None (Accessed January 13, 2023)

What	were	some	things	they	could	have	done	right?

Impact	of	Technical	Debt	– Another	Case

14
Source:	https://devops.com/southwest-technical-debt-richixbw/

Eventually	someone	has	to pay	for	the	debt!!

Reasons for Technical	Debt

15

• Schedule	pressure	– Copy	paste	programming
• Its not always	about	getting	the	syntax	right	and	making	something	
work

• Lack	of	skilled	designers	– Poor	applications	of	design	principles
• Lack of awareness	about	best	practices	
• Leading in the	wrong direction

• Lack of awareness	of key indicators and refactoring	- Design	issues
• Periodic review of design and making changes can go	a	long	way!!

Everyone	in the decision making could be blamed	– Architects,	developers,	managers..
but	that doesn’t end there.	There	are	many other reasons..

Managing	Technical	Debt

16

• Increase	awareness about tech debt
• Being aware is the best start
• Create	goals	keeping	this	in	mind

• Detect	and	repay	tech	debt	systematically
• Identify instances of debt (huge impact)
• Create	systematic	plan	on	recovery

• Prevent accumulation of tech debt
• Once	under	control, prevent further accumulation
• Perform regular	monitoring

• Companies	should	allocate	some	budget	for	tech	debt

Image	source:	xkcd

Key	Major	Questions

17

1. Why	do	even	good	developers	write	bad	software?

2. How	do	we	fix	our	software?

3. How	to	know	if	the	software	is	“bad”	even	when	its	working	fine?

Refactoring!

18

19

“Any	fool	can	write	code	that	a	computer	can	understand.	
Good	Programmers	write	code	that	humans	can	
understand”

Martin	Fowler
Thoughtworks

Image	source:	thoughtworks

What	is	Refactoring?

20

It	is	a	change made	to	the	internal	structure	of	software	to	make	it	easier	to	
understand	and	cheaper	to	modify	without	changing	its	observable	
behaviour																																							

-- Martin	Fowler

Image	source:	imageflip.om

What	is	Refactoring?

21

• Refactoring	is	not	always	a	clean	up	of	code!
• Goal is to make software easier to understand and modify
• Think	of	performance	optimization	
• Refactoring	does not or should	not	change	behavior	– No	change	to	
external	user	[Changing	hats]
• Not	always	same	as:
• Adding	features
• Debugging	code
• Rewriting	code

Image	source:	imageflip.om

When	to	Refactor?

22

• Follow	the rule of three
• First time, just get it done
• Second	time	to	do	something	similar,	duplicate
• Third time, just refactor

• Refactor	when	you	add	a	function	(feature)
• When	adding	new	feature,	make	it	more	effective	and	efficient

• Refactor	when	you	fix	a	bug
• Bug	by	themselves	can	be	good	indicators	– Are	they	becoming	more	common?	

• Refactor	when you do code reviews
• Create review	groups	for	code	reviews,	new	perspective	may	lead	to	refactoring

Image	source:	imageflip.om

Some	Common	Refactoring	– Low	Level	refactoring

23
Image	source:		Intellij.com

• IDEs	provide	a	lot	of	support
• Variable/method/class	renaming
• Extraction of duplicate code snippets
• Change	in	method	signature
• Method or constant	extraction
• Warnings	about	unused	variables,	
parameter	uses/declarations
• Auto-completion	support	and	minimal
documentation	support

High-level	refactoring	- Challenges	

24

• Much	more	complex	– has	dependency	on	use	case,	context
• Risk of introducing bugs – Changes in design can introduce new issues
• Testing	can	become	difficult	– New	test	cases	needs	to	be	added,	overall
Behavior	may	change	[ideally	not!]
• Communication	of	changes	– Changes	can	be	more	abstract	and	harder	
to	explain
• Measuring	the	impact	– Changes	can	be	harder	to	quantify

Image	source:	imageflip.om

Summary	So	Far

25

How	to	Identify	Technical	
Debts	and	Refactor?

26

Software	Quality	as	an	Indicator

27

How	to	Refactor?

28

• Identify the refactoring	points
• Create	a	refactoring	plan
• Make a backup of the existing codebase:	Versioning	system
• Use	semi-automated	approach:	Some	tool	support	is	always	available
• Perform	the	refactoring	
• Test	if	everything	works	like	before!	– Test	extensively	(new	bugs,	
broken	functionalities,	etc.)
• Repeat the process

Remember: Refactoring is not just a one time activity!!

Refactoring	Points	- Things	starts to	rot	and	Smell

29

Code	Smells	and	so	does	design	– You	heard	that	right!!!

”smell”,	Coined	by	Kent	Beck	in	1999

Smells	are	certain	structures	in	the	code	that	suggest (sometimes	they
scream	for)	the	possibility	of	refactoring	

A	”bad	smell"	describes	a	situation	where	there	are	hints	that	suggest
there	can	be	a	design	problem

Many	different	definitions	- https://zenodo.org/record/1066135#.Y8PcXS8RpQI

Many	methods,	reasons,	ways	to	detect..

30
Tushar	Sharma,	Diomidis Spinellis,	A	survey	on	software	smells,	Journal	of	Systems	and	Software,	Volume	138,	2018

31

Types	of	Design	Smells

Missing	Abstraction	– Example	Scenario

Scenario:	Consider	the	e-bike	system	which	requires	to	store	address	of	
every	user

32

Data	clumps!!

Missing	Abstraction	– Example	Refactoring

Solution:	Refactor	the	design,		move	collection	of	primitive	types	and	
form	a	separate	class

33

Abstraction	Smell	– Missing	Abstraction

Indication: Usage of clumps of data or	strings	used	instead	of	class	or	
interface
Rationale: Abstraction not identified and represented as	primitive	types
Causes: Inadequate	design	analysis,	lack	of	refactoring,	focus	on	minor	
performance	gains
Impact:	Affects	understandability,	extensibility,	reusability,	.

34

Abstraction	Smell	– Imperative	Abstraction
Scenario:	Consider	the	e-bike	system	where	students	have	to perform	
different	operations	on	their	wallet

35

What	all	problems	do	you	foresee?

Wallet	will	have	different	properties

Abstraction	Smell	– Example	Refactoring

Solution:	Refactor	the	design,		move	the	functions	into	one	class	and	
bundle	it	with	data	

36

Remember	abstraction	is	all	about	generalization
And	specification of common and important characteristics!!	

Abstraction	Smell	– Imperative	Abstraction
Indication: Operation	is	turned	into	a	class.	A	class	that	has	only	one	
method	defined	in	it
Rationale:	Defining	functions	explicitly	as	classes	when	data	is	located	
somewhere	violates	OOPS	principles.	Increases	complexity,	reduce	
cohesiveness
Causes: Procedural	thinking	(capture	the	bundled	nature)
Impact:	Affects	understandability,	extensibility,	testability,	reusability..

37

Abstraction	- Enablers

• Crisp	boundary	and	identity
• Make abstractions	when	necessary	and	have	clear	boundaries

• Map	domain	entities
• Vocabulary	mapping	from	problem	domain	to	solution	domain

• Ensure	coherence	and	completeness
• Completely	support	a	responsibility,	don’t	spread	across

• Assign	Single	and	Meaningful	Responsibility
• Each abstraction has unique and non-trivial responsibility

• Avoid	Duplication	
• The abstraction implementation	and	the	name	appears	only	once	in	design

38

Encapsulation	Smell	– Deficient	Encapsulation

Scenario:	Consider	the	e-bike	system	where	user	details	like	DOB,	gender,	
etc.	are	public

39

Encapsulation Smell	– Example	Refactoring	

Solution:	Refactor	the	design,		modify	the	access	specifiers	without	
affecting	others

40

Encapsulation	Smell	– Deficient	Encapsulation

Indication:	One	or	more	members	is	not	having	required	protection	
(eg:	public)
Rationale:	Exposing	details	can	lead	to	undesirable	coupling.	Each	change	in	
abstraction	can	cause	change	in	dependent	members
Causes: Easier	testability,	procedural	thinking	(expose	data	as	global	
variables),	quick	fixes
Impact:	Affects	changeability,	extensibility,	reliability,…

41

Encapsulation	Smells	– Leaky	Encapsulations

Scenario:	Consider	the	e-bike	system	where	the	docking	station	class	
provides	list	of	bikes	parked	in	that	station

42

Encapsulation Smell	– Example	Refactoring	

Solution:	Refactor	the	design,		make return	types	of	public	more	abstract	
to	support	modifiability,	ensure	clients	do	not	get	direct	access	to	change	
internal	state

43Park	vehicle	function	can	internally	update	the	bike	list

Encapsulation	Smells	– Leaky	Encapsulations

Indication:	Abstraction	leaks	implementation	details	(public	methods)
Rationale:	Implementation	details	needs	to	be	hidden, Internal	state	can	
be	corrupted	due	to	open	methods
Causes: lack of awareness, project	pressure	(quick	hacks),	too	fine-
grained	public	methods	exposed	(think	of	simple	setter)
Impact:	Affects	changeability,	reusability,	Reliability

44

Encapsulation	- Enablers

• Hide implementation	details
• Abstraction	exposes	only	what	abstraction	offers	and	hides	implementation
• Hide data members and details on how the functionality	is	implemented

• Hide Variations
• Hide implementation	variations in types or hierarchies
• Easier	to	make	changes	in	abstraction	implementation	without	affecting	subclasses	
or	collaborators

45

Modularization Smells	– Broken	Modularization
Scenario:	Bike	class	gets	all	data	from	BikeDetails class but	all	
operations	resides	in	Bike	Class

46

Modularization	Smells	– Example Refactoring

Solution:	Refactor	the	design	in	such	a	way	that	the	data	and	methods	
stay	together	as	a	unit.	Enhancing	cohesiveness	is	the	key

47

Modularization	Smells	– Broken	Modularization

Indication: Data	and	methods	are	spread	across	instead	of	being	bundled
Rationale:	Having	data	in	one	and	methods	in	another results	in	tight	
coupling,	violates	modularity
Causes:	Procedural	thinking,	lack	of	understanding	of	existing	design
Impact:	Affects	changeability	and	extensibility,	reusability,	Reliability

48

Modularization	Smells	– Enablers	
• Localize	related data and methods
• All the data and method	related	to	one	class	should	be	kept	in	the	same	class

• Abstractions	should	of	manageable	size
• Ensure classes are of manageable	size	– mainly	affects	maintainability,	
extensibility	and	understandability

• Ensure	there	are	no	cyclic	dependencies
• Graph of relationships between classes should be acyclic

• Limit	Dependencies
• Create classes with low fan-in and low fan out

• Fan-in:	number	of	incoming	dependencies
• Fan-out:	number	of	outgoing	dependencies

49

Hierarchy	Smells	– Missing	Hierarchy

Scenario:	In	the	e-vehicle	scenario,	user	can	pay	in	any	mode	of	
payment

50

One	way	to	support	different	types	of	payment	is	to	write	them	
inside	makePayment function	

Hierarchy	Smells	– Example	Refactoring

Solution:	Refactor	by	creating	hierarchies	based	on	the	behavior	
changes	that	comes	under	payment	function.	Put	the	common	parts in
parent class (think	about	abstract	class	or	interfaces	as	well)

51

Note:	DebitCard and	
CreditCard needs to be
Specialized	and generalized into
Cards only if
They	have	enough	variation	
points

Hierarchy	smells	– Missing	Hierarchy

Indication:	Using	if	conditions	to	manage	behavior	variations	instead	of	
creating	hierarchy
Rationale:	Using chained if-else or Switch	indicates	issues	with	handling	
variations.	Commonality	among	the	types	can	also	be	used	
Causes:	”simplistic	design”,	procedural	approach,	overlooking	inheritance
Impact:	Reliability,	Testability,	understandability,	extensibility,..	

52

Hierarchy	smells	– Example Scenario

Scenario:	Each	bike	can	be	of	different	model	resulting	in	different	design	
(shape,	colour,	etc.)

53

Hierarchy	smells	– Refactoring

Solution:	Remove	hierarchy	and	transform	subtypes	into	instance	variables

54

Hierarchy	smells	– Unnecessary Hierarchy

Indication: Inheritance has been applied needlessly for a particular context
Rationale:	The	focus	should	be	more	on	capturing	commonalities	and	
variation	in	behavior	than	data.	Violation	results	in	unnecessary	hierarchy
Causes:	subclassing	instead	of	instantiating,	taxonomy	mania	(overuse	of	
inheritance)
Impact:	Understandability,	Extensibility,	Testability..	

55

Hierarchy	Smells	- Enablers

• Apply	meaningful	classification
• Identify commonalities	and	variations	– Classify	into	levels

• Apply	meaningful	generalization	
• Identify common behavior	and elements	to	form	supertypes

• Ensure Substitutability
• Reference of supertype	can	be	substituted	with	objects	of	subtypes

• Avoid	redundant	paths
• Avoid redundant paths in inheritance hierarchy

• Ensure	proper ordering
• Express	relationships	in	a	consistent	and	orderly	manner

56

Some General Observations
• Analyze	your	design
• Is this abstraction enough?
• Is there some responsibility	overload?
• Have	we	made	use	of	the	right	set	of	access	modifiers?
• Only expose what is necessary	
• Ensure high cohesiveness and loose coupling
• Create hierarchies whenever necessary (only	when	necessary)

• Always	remember,	refactoring	is	not	a	one-time	process
• The more it is delayed, the more	debt	is	incurred!
• Combination	of design smells	exists
• Code can serve as good indicators of design	smells	– Code	also	smells!

57

Next	up:	Code	Smells	and	
Code	Metrics!!

58

Group Activity

59

Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

