L~

Refactoring: An
Introduction

CS6.401 Software Engineering

g 0 1[h\l AT @q‘”\e@w Yes M\\fd] Ccvﬂ've,

Dr. Karthik Vaidhyanthan

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

SR o
INTERNATIONAL INSTITUTE OF
INFORMATION TECHNOLOGY

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generate
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan
Sources:
1. Refactoring, Improving the design of existing code, Martin Fowler et al., 2000
2. Refactoring for Software design Smells, Girish Suryanarayana et al.
3. martinfowler.com
4. Few articles by Ipek Ozkaya and Robert Nord, SEI, CMU

https://martinfowler.com/

As a program is evolved, its complexity increases unless work is done

to maintain or reduce it
-- Lehmans’ Law of Increasing Complexity

Few Examples to Begin with..

@ Payment

o isUPI: boolean

o isInternetBanking: boolean
o paymentld: String

o userld: String

m processUPIPayment(): String
m processinternetBanking(): String

Do you see some issues here?

Few Examples to Begin with..

.

@ Vehicle

@ Moped

o vehicleld: String

(©) Bike

o mopedRegNum: String o bikeRegNum: String

@ Car

o addDetails(): String o addDetails(): String

o carRegNum: String

What about this?

o addDetails(): String

Ever heard about Technical I
Debt?

What is Debt?

« debt

/det/

noun

a sum of money that is owed or due.

"l paid off my debts"

Similar: bill account tally

4

Source: Google dictionary - Oxford, entrepreneur.com

Technical Debt

Technical Debt

Customer's view

Image source: medium, google images

Technical Debt - Definition

Technical debt is the debt that accrues when you knowingly
unknowingly make wrong or non-optimal design decisions

Metaphor coined by Ward Cunningham, 1992

/ How do I modify
this? This looks

\ impossible

its just a quick fix
add to the code

Quick fix Add a feature Add more features

Software Timeline

or

Types of Technical Debt

Technical Debt

o@; . *"9
4

Code Debt Design Debt Architecture Debt Documentation Debt

4 E) @e

Design Stamina Hypothesis

good design

cumulative
functionality

no design

...but up here there's no
useful trade-off

—-—-design payoff line

down here it may be worth
trading off design quality
for time to market...

time

source: martinfowler.com

11

Impact of Technical Debt

“One large North American bank learned that its more than 1,000 systems and
applications together generated over $2 billion in tech-debt costs” - McKinsey

* Interest is very much compounding in nature - changes has to be done
on already existing debt

* Cost of Change becomes extremely high!

 Affects morale of development team

* Huge impact on progress of the business - product and feature delays
 Often considered as the digital dark matter!

12
Source: https://www.mckinsey.com/capabilities/mckinsey-digital /our-insights /demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/demystifying-digital-dark-matter-a-new-standard-to-tame-technical-debt

Impact of Technical Debt - An Example Scenario

A successful company in the maritime equipment industry successfully evolved its
products for 16 years, in the process amassing 3 million lines of code. Over these 16
years, the company launched many different products, all under warranty or
maintenance contracts; new technologies evolved; staff turned over; and new
competitors entered the industry.

The company's products were hard to evolve. Small changes or additions led to large
amounts of work in regression testing with the existing products, and much of the
testing had to be done manually, over several days per release. Small changes often
broke the code, for reasons unsuspected by the new members of the development
team, because many of the design and program choices were not documented.

What were some things they could have done right?

Source: Ozkaya, |. and Nord, R. . 2019: Managing the Consequences of Technical Debt: 5 Stories from the Field. Carnegie Mellon University's Software Engineering Institute
Blog,. https://doi.org/None (Accessed January 13, 2023)

Impact of Technical Debt - Another Case
Southwest Airlines: ‘Shameful’ Technical Debt Bites Back

@ BY: RICHI JENNINGS ON JANUARY 5, 2023 — 0 COMMENTS

Welcome to The Long View—where we peruse the news of the week and strip it to the essentials. Let’s work out what really
matters.

20 Years of Neglect Led to ‘Meltdown’

Last month’s débacle of canceled flights was caused by decades of technical debt. That’s the analysis of Columbia
University professor Zeynep Tufekci.

Analysis: SWA needs a cloud burst

Although there were several contributing factors, a lack of scalability in a critical crew scheduling system led to days of near-
total paralysis: In many cases, the staff were in the right place to fly and crew the planes, but the SkySolver system had no
way of knowing that. Making things worse, manual fallbacks collapsed under the weight of the workload.

The answer: ... employee scheduling software that debuted around the same time as the Xbox 360 and PlayStation 3.
... Southwest pilots have reportedly begged company executives to update the “antiquated” systems since at least
2015.

Eventually someone has to pay for the debt!!

14
Source: https://devops.com/southwest-technical-debt-richixbw/

Reasons for Technical Debt

Everyone in the decision making could be blamed - Architects, developers, managers..

but that doesn’t end there. There are many other reasons..

* Schedule pressure - Copy paste programming

* [ts not always about getting the syntax right and making something
work

* Lack of skilled designers — Poor applications of design principles
* Lack of awareness about best practices
* Leading in the wrong direction

* Lack of awareness of key indicators and refactoring - Design issues
* Periodic review of design and making changes can go a long way!!

Managing Technical Debt

T LORKING ON?
* Increase awareness about tech debt AT ARE YOO LIORAING O
. . TRYNG TO Fix THE. PROBLEMS T
* Being aware is the best start CREATED WHEN T TRED To Fix
. - i M THE. PROBLEMS I CREATED \JHEN
Create goals keeping this in mind L TRED T FIX THE. PROBLENS
* Detect and repay tech debt systematically % ICRERTEDL}HBQ...
* Identify instances of debt (huge impact)

* Create systematic plan on recovery

 Prevent accumulation of tech debt

* Once under control, prevent further accumulation
* Perform regular monitoring

» Companies should allocate some budget for tech debt

16
Image source: xkcd

Key Major Questions

1. Why do even good developers write bad software?
2. How do we fix our software?

3. How to know if the software is “bad” even when its working fine?

17

Any fool can write code that a computer can understand.
Good Programmers write code that humans can
understand”

Martin Fowler
Thoughtworks

19

Image source: thoughtworks

What is Refactoring?

It is a change made to the internal structure of software to make it easier to

understand and cheaper to modify without changing its observable
behaviour

-- Martin Fowler

S0 THAT'S

REFACT
Emnr* o

4mm IT'S WORKING
PERFECTLY SO TRY NOT
TOTOUCH ANYTHING

20
Image source: imageflip.om

What is Refactoring?

* Refactoring is not always a clean up of code!
* Goal is to make software easier to understand and modify
* Think of performance optimization

* Refactoring does not or should not change behavior - No change to
external user [Changing hats]

* Not always same as:
* Adding features
* Debugging code
* Rewriting code

Image source: imageflip.om

When to Refactor?

e Follow the rule of three
* First time, just get it done
* Second time to do something similar, duplicate
* Third time, just refactor

* Refactor when you add a function (feature)
 When adding new feature, make it more effective and efficient

* Refactor when you fix a bug
* Bug by themselves can be good indicators - Are they becoming more common?

* Refactor when you do code reviews
* Create review groups for code reviews, new perspective may lead to refactoring

Image source: imageflip.om

Some Common Refactoring - Low Level refactoring

* IDEs provide a lot of support

* Variable/method/class renaming
 Extraction of duplicate code snippets

* Change in method signature

* Method or constant extraction

* Warnings about unused variables,
parameter uses/declarations

» Auto-completion support and minimal
documentation support

Image source: Intellij.com

public String getStylus() {

return Ea000;

} Refactor This

interface Device{

} void touchBy3 2. Move... F6 !
3. Copy... F5
4. Safe Delete... H®

Extract

5. Variable... 38V
6. Constant... \3C
7. Field... \38F
8. Parameter... 3P
9. Functional Parameter... (3P
0. Functional Variable...
Method... \#EM

Type Parameter...
Method Object...
Delegate...
Interface...
Superclass...

23

High-level refactoring - Challenges

* Much more complex - has dependency on use case, context

* Risk of introducing bugs — Changes in design can introduce new issues
* Testing can become difficult - New test cases needs to be added, overall
Behavior may change [ideally not!]

 Communication of changes — Changes can be more abstract and harder
to explain

* Measuring the impact - Changes can be harder to quantify

Image source: imageflip.om

Summary So Far

Technical Debt - Definition

Technical debt is the debt that accrues when you knowingly or
unknowingly make wrong or non-optimal design decisions

Metaphor coined by Ward Cunningham, 1992

{ How do I modify’
this? This looks
\ impossible

((its just a quick fix

ﬁts just a quick fix
add to the code

add to the code

)

Quick fix Add a feature Add more features

v

Software Timeline

What is Refactoring?

It is a change made to the internal structure of software to make it easier to
understand and cheaper to modify without changing its observable
behaviour

-- Martin Fowler

|
PERFECTLY SO TRY N
|

Image source: imageflip.om

Types of Technical Debt

Technical Debt

Code Debt Design Debt Architecture Debt Documentation Debt

I B0

High-level refactoring - Challenges

* Much more complex - has dependency on use case, context

10

* Risk of introducing bugs - Changes in design can introduce new issues

* Testing can become difficult - New test cases needs to be added, overall

Behavior may change [ideally not!]

* Communication of changes — Changes can be more abstract and harder

to explain
* Measuring the impact — Changes can be harder to quantify

Image source: imageflip.om

24

How to Identify Technical I
Debts and Refactor?

Software Quality as an Indicator

Software getting increasingly
complex and hard to understand

Some Indicators

'
=

=

Coftinre @M@My Zeseneh (ofe

4=

5

How to Refactor?

* Identify the refactoring points

* Create a refactoring plan

* Make a backup of the existing codebase: Versioning system

* Use semi-automated approach: Some tool support is always available
* Perform the refactoring

* Test if everything works like before! — Test extensively (new bugs,
broken functionalities, etc.)

* Repeat the process

Remember: Refactoring is not just a one time activity!!

Refactoring Points - Things starts to rot and Smell

Code Smells and so does design — You heard that right!!!
"smell”, Coined by Kent Beck in 1999

Smells are certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring

A "bad smell” describes a situation where there are hints that suggest
there can be a design problem

Many different definitions - https://zenodo.org/record/1066135#.Y8PcXS8RpQI

Many methods, reasons, ways to detect..

o Architecture smells (3)
c Design smells (2) \
| Implementation smells (6)

Energy (1) \
o Configuration systems (1)
Services (3)

cAspect-oriented systems (2)

. Performance (3)

Tests (3) |
Web (1) /

Reuse (1)

Usability (1))J

Indicator (4)

Poor solution (6) X
Violates best practices (2)O

Defining Characteristics

) /

Software Smell

Models (2) /

Database (1)
§ Effect-based (1)
o Principle-based (2)

l Classification

. Granularity-based (2)
& Artifact characteristics-based (2)

Z Machine learning (6)
S History (2)

Detection Methods

. Rules/Heuristics (15)
3 Optimization (4)

Metrics (19)

k Impacts quality (8) =

on software product

Recurrence (3) &
Maintainability (7) &
Effort/Cost (4)
Reliability (6)

Change proneness (4)
Testability (1)
i Performance (3) %

on software development processes (1,

on people (2)
Lack of skill or awareness (4)

(Frequently changing requirements (2) 4

[Knowledge gap (2) |

Langauge, platform, or framework constraints (5) ”

Processes (l):J

Causes
C Schedule pressure 3,

_Priority to features over quality (1)
_ Politics (3)

_Team culture (3)

\ Human resource planning (1) &

Tushar Sharma, Diomidis Spinellis, A survey on software smells, Journal of Systems and Software, Volume 138, 2018

Broken Modularization

Insufficient Modularization

Types of Design Smells

Missing Abstraction

Imperative Abstraction

Unnecessary Abstraction

Incomplete Abstraction

Unutilized Abstraction

Multifaceted Abstraction

Duplicate Abstraction

Abstraction

1

Cyclically-dependant
Modularization

Modularization

Hub-like Modularization

Deficient Encapsulation

Leaky Encapsulation

Missing Encapsulation

e — Design Smells — Encapsulation
Hierarchy
Missing Hierarchy Deep Hierarchy
Unnecesssary Hierarchy Rebellious Hierarchy
Unfactored Hierarchy Broken Hierarchy
Wide Hierarchy Multipath Hierarchy
Speculative Hierarchy Cyclic Hierarchy

Unexploited Encapsulation

Missing Abstraction — Example Scenario

Scenario: Consider the e-bike system which requires to store address of

every user

@ User

o firstName: String
o lastName: String
o houseNum: String
o street: String

o zip: String

o addDetails(): String

Data clumps!!

32

Missing Abstraction — Example Refactoring

Solution: Refactor the design, move collection of primitive types and
form a separate class

@ User ‘ | @ Address

o houseNum: String
o street: String
o zip: String

o firstName: String
o lastName: String
o address: Address

o addDetails(): String

o getHouseNum(): String

Abstraction Smell - Missing Abstraction

Indication: Usage of clumps of data or strings used instead of class or
interface

Rationale: Abstraction not identified and represented as primitive types

Causes: Inadequate design analysis, lack of refactoring, focus on minor
performance gains

Impact: Affects understandability, extensibility, reusability, .

Abstraction Smell - Imperative Abstraction

Scenario: Consider the e-bike system where students have to perform
different operations on their wallet

g

@ Student

o studentld: String
o studentName: String

o getStudentName(): String

@ CreateWallet

o create(): Wallet

\

@ DisplayWallet

o display(): void

(© wallet

N\

@ RemoveWallet

o remove(): void

e

What all problems do you foresee?

Wallet will have different properties

35

Abstraction Smell - Example Refactoring

Solution: Refactor the design, move the functions into one class and
bundle it with data

@ Students

o studentld: String
o setStudent(): String

Remember abstraction is all about generalization
J(And specification of common and important characteristics!!

(©) wallet

o create(): Wallet
o display(): void
e remove(): void

36

Abstraction Smell - Imperative Abstraction
Indication: Operation is turned into a class. A class that has only one

method defined in it

Rationale: Defining functions explicitly as classes when data is located

somewhere violates OOPS principles. Increases complexity, reduce
cohesiveness

Causes: Procedural thinking (capture the bundled nature)
Impact: Affects understandability, extensibility, testability, reusability..

Abstraction - Enablers

* Crisp boundary and identity
* Make abstractions when necessary and have clear boundaries

* Map domain entities
* Vocabulary mapping from problem domain to solution domain

* Ensure coherence and completeness
* Completely support a responsibility, don’t spread across

* Assign Single and Meaningful Responsibility

* Each abstraction has unique and non-trivial responsibility

* Avoid Duplication
* The abstraction implementation and the name appears only once in design

Encapsulation Smell - Deficient Encapsulation

Scenario: Consider the e-bike system where user details like DOB, gender,

etc. are public
@ User

o id: String

o hame: String
o dob: Date

o gender: String

39

Encapsulation Smell - Example Refactoring

Solution: Refactor the design, modify the access specifiers without

affecting others
@ User

o id: String

0 name: String
o dob: Date

0 gender: String

40

Encapsulation Smell - Deficient Encapsulation

Indication: One or more members is not having required protection
(eg: public)

Rationale: Exposing details can lead to undesirable coupling. Each change in
abstraction can cause change in dependent members

Causes: Easier testability, procedural thinking (expose data as global
variables), quick fixes

Impact: Affects changeability, extensibility, reliability,...

Encapsulation Smells - Leaky Encapsulations

Scenario: Consider the e-bike system where the docking station class
provides list of bikes parked in that station

@ DockingStation

o stationld: String
0 bikeList: ArrayList

o updateBikeList(bikes: List): Boolean
o getBikeList(): ArrayList

42

Encapsulation Smell - Example Refactoring

Solution: Refactor the design, make return types of public more abstract
to support modifiability, ensure clients do not get direct access to change
internal state

@ DockingStation

o stationld: String
0 bikeList: ArrayList

m updateBikeList(bikes: ArrayList): Boolean
o getBikelList(): ArrayList
o parkBike(bikeObj: Bike): Boolean

Park vehicle function can internally update the bike list

Encapsulation Smells - Leaky Encapsulations

Indication: Abstraction leaks implementation details (public methods)

Rationale: Implementation details needs to be hidden, Internal state can
be corrupted due to open methods

Causes: lack of awareness, project pressure (quick hacks), too fine-
grained public methods exposed (think of simple setter)

Impact: Affects changeability, reusability, Reliability

Encapsulation - Enablers

* Hide implementation details
» Abstraction exposes only what abstraction offers and hides implementation
* Hide data members and details on how the functionality is implemented

* Hide Variations
* Hide implementation variations in types or hierarchies

* Easier to make changes in abstraction implementation without affecting subclasses
or collaborators

Modularization Smells — Broken Modularization

Scenario: Bike class gets all data from BikeDetails class but all
operations resides in Bike Class

@ Bike
o bikeData: BikeDetails

o getBikeName(bikeld: String): String
¢

@ BikeDetails

o bikeld: String
o bikeName: String

o inPosesssion: Boolean
o chargeRemaining: Double

46

Modularization Smells - Example Refactoring

Solution: Refactor the design in such a way that the data and methods
stay together as a unit. Enhancing cohesiveness is the key

@ Bike

o bikeld: String

o bikeName: String

o inPosession: Boolean

o chargeRemaining: Double

o getBikeName (bikeld: String): String

4/

Modularization Sm

ells — Broken Modularization

Indication: Data and methods are spread across instead of being bundled

Rationale: Having data in one and methods in another results in tight

coupling, violates modu!

Causes: Procedural thinl

arity
king, lack of understanding of existing design

Impact: Affects changeal

nility and extensibility, reusability, Reliability

48

Modularization Smells — Enablers

* Localize related data and methods
 All the data and method related to one class should be kept in the same class

* Abstractions should of manageable size
* Ensure classes are of manageable size - mainly affects maintainability,
extensibility and understandability
* Ensure there are no cyclic dependencies
* Graph of relationships between classes should be acyclic

* Limit Dependencies

* Create classes with low fan-in and low fan out

* Fan-in: number of incoming dependencies
* Fan-out: number of outgoing dependencies

Hierarchy Smells - Missing Hierarchy

Scenario: In the e-vehicle scenario, user can pay in any mode of
payment

@ Payment
o paymentld: String

o paymentMethod: String
o amount: Double
0 paymentGateway: String

o makePayment(user: User, amount: String): Boolean

One way to support different types of payment is to write them
inside makePayment function

Hierarchy Smells - Example Refactoring

Solution: Refactor by creating hierarchies based on the behavior
changes that comes under payment function. Put the common parts in
parent class (think about abstract class or interfaces as well)

© Payment

o paymentld: String

o makePayment(user: User, amount: String): Boolean

Note: DebitCard and
\ CreditCard needs to be
Specialized and generalized into

@UPIPayment @InternetBanking @ QN ST Cards only if
o upild: String o transld: String g g::g?;%\gqgrtlr?r:‘::trmg They have enough variation
points

@ DebitCard @ CrediCard

o cardType: String o emiSupport: Boolean

o1

Hierarchy smells - Missing Hierarchy

Indication: Using if conditions to manage behavior variations instead of
creating hierarchy

Rationale: Using chained if-else or Switch indicates issues with handling
variations. Commonality among the types can also be used

Causes: "simplistic design”, procedural approach, overlooking inheritance
Impact: Reliability, Testability, understandability, extensibility,..

Hierarchy smells - Example Scenario

Scenario: Each bike can be of different model resulting in different design
(shape, colour, etc.)
(©) Bike

o bikeld: String
o bikeName: String

o getBikeName(): Strmg

/o

@BlkeModeIZ @BlkeModelC
l

o3

Hierarchy smells — Refactoring

Solution: Remove hierarchy and transform subtypes into instance variables

(©) Bike

o bikeld: String
o bikeName: String
o bikeModel: String

o getBikeName(): String

Hierarchy smells — Unnecessary Hierarchy

Indication: Inheritance has been applied needlessly for a particular context

Rationale: The focus should be more on capturing commonalities and
variation in behavior than data. Violation results in unnecessary hierarchy

Causes: subclassing instead of instantiating, taxonomy mania (overuse of
inheritance)

Impact: Understandability, Extensibility, Testability..

25

Hierarchy Smells - Enablers

* Apply meaningful classification
* Identify commonalities and variations - Classify into levels

* Apply meaningful generalization
* Identify common behavior and elements to form supertypes

* Ensure Substitutability
* Reference of supertype can be substituted with objects of subtypes

* Avoid redundant paths
* Avoid redundant paths in inheritance hierarchy

* Ensure proper ordering
* Express relationships in a consistent and orderly manner

Some General Observations

* Analyze your design
* Is this abstraction enough?
* [s there some responsibility overload?
* Have we made use of the right set of access modifiers?
* Only expose what is necessary
* Ensure high cohesiveness and loose coupling
* Create hierarchies whenever necessary (only when necessary)

* Always remember, refactoring is not a one-time process

* The more it is delayed, the more debt is incurred!

» Combination of design smells exists

* Code can serve as good indicators of design smells — Code also smells!

Next up: Code Smells and I
Code Metrics!!

Group Activity |

Thank You

Course website: karthikv1392.github.io/cs6401 se

Email: karthik.vaidhyanathan@iiit.ac.in
Web: https://karthikvaidhyanathan.com
Twitter: @karthi_ishere

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

