
Code	Smells	and	
Code	Metrics
CS6.401	Software	Engineering

Dr.	Karthik	Vaidhyanthan
karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com

karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/

Acknowledgements

The materials used in this presentation have been gathered/adapted/generate
from various sources as well as based on my own experiences and knowledge

-- Karthik Vaidhyanathan

Sources:

1. Refactoring,	Improving	the	design	of	existing	code,	Martin	Fowler	et	al.,	2000
2. Various research articles that have been duly cited

2

How	to	get	insights	from	
existing	software	systems?

3

Mining	Software Repositories

4

• Large amount of artefacts are generated in the software development process

• These data are available from various sources
• Version control systems (SVN, Mercurial,..)
• Q&A Forums (Stackoverflow, Stackexchange, etc.)
• Bug repositories (BugZilla, Jira)
• Code repositories (Github, Gitlab, etc.)
• Crash reports, log files, execution traces, etc.

The	MSR	field	analyzes	rich	data	available	in	software	repositories	to	extract	useful	
and	actionable	information	about	software	projects	and	systems	– msrconf.org

Mining	Software	Repositories

5

Repositories are great sources of unbiased data on how a product came to be	-
something that's very valuable and hard to find.

-- Andreas Zeller

Source	of	quote:	Walter	Tichy.	2010.	An	Interview	with	Prof.	Andreas	Zeller:	Mining	your	way	to	software	reliability.	Ubiquity	2010,	November,	Article	3	(November	2010),	6	pages.	

https://conf.researchr.org/home/msr-2023
• Generate	insights	on	best	practices	(eg:	Sources	of	technical	debt)
• Develop approaches	for	automated	code	completions,	bug	localization,..
• …	

https://conf.researchr.org/home/msr-2023

But	what	about	code?

6

Code	can	also	Smell

7

Code smell serves an indication that there is deeper
problem in the system

• Code smells are only hints – not necessarily a problem!

• Look for bad smells – definitely needs a refactoring!

• But is there some list that could be used? Or common ones?

Image	source:	refactoring.guru

Some	Examples

8

Code	Smells	– Long	Method

9

Expand	the	comments	to	code	– that’s	a	very	long	method!!

Long	Method		- Refactoring

10

What	changes	do	you	notice?	– Any	comments	?	Can	we	do	better?

Code	Smells	- Long	Method	

11

Longer	a	procedure,	more	difficult	it	is	to	understand

Context: A method has to perform a series of computations to accomplish a
functionality

Problem: All the computations are written in its entirety inside one method making
the method long - Too many lines of code!!

Suggested Refactoring: Any method longer than 20 lines (even 10+) is worth
inspecting

Decompose the method into smaller methods -> Extract Method

This may result in other smells, which can call for further refactoring – parameter list

Code	Smells	– Long	Parameter	List

12

See	the	number	of	parameters	that	are	taken	as	input	by	enrolmentHandler

Long	Parameter	List	– Refactoring

13

The	parameters	are	now	respective	objects,	can	we	do	further?

Check	parameters

Code	Smells	- Long	Parameter	List

14

Try	to	have	not	more	than	4	parameters	– Not	a	Golden	rule

Context: A method has to perform a series of computations to accomplish a
functionality and it takes in lot of parameters

Problem: Hard to understand and the calling function/method needs to place the
parameters in right positions, attracts adding of even more parameters!!

Suggested Refactoring: Multiple ways
• Replace parameter with method (call inside)
• Preserve whole object
• Introduce parameter object (if data items are related and no logical object
exists

Long parameter can indicate other smells (eg: long methods, data clumps, primitive
obsession)

Code	Smells	– Primitive	Obsession

15

Overuse	of	primitive	types

Primitive	Obsession	– Refactoring

16

We	can	do	further,	can	we?

Check	type	of	parameters

Code	Smells	– Primitive	Obsession

17

Over	use of	primitive	data	types	instead	of	objects

Context: A method has to perform a series of computations to accomplish a
functionality and it takes in lot of parameters of primitive types

Problem: Having too many primitive types may lead to long parameters and can
contribute to code duplication and type mismatches

Suggested Refactoring: Multiple ways
• Replace data value with object
• If there are group of fields (extract class)
• If there are fields that belong to object (Introduce parameter object)

Primitive obsession can lead to other smells (eg: long methods, data clumps, long
Methods, etc.)

Code	Smells	– Switch	Statements	(Conditional	Complexity)

18

Too	many	conditions!!	Can
we	do better?

Switch	Statements	(Conditional	Complexity)	- Refactoring

19

Leveraging	inheritance	and	polymorphism,	we	can	do	this	for	different	types	of	student

Code	Smells	– Conditional	Complexity

20

Complex set of switch	or	sequence	of	if	conditions.	When	nesting	goes	too	far!!	

Context: A Single class has some operations and it requires editing multiple times
when changes are made outside the class

Problem: Having too many conditional operations or switch makes it harder to
understand, and high probability of breaking, testing also becomes difficult

Suggested Refactoring: Multiple ways
• Introduce polymorphism
• Extract and move – Group things that need to be together, move to introduce
polymorphism

• If there is only few cases that affect singe method – use extract method
[Polymorphism can become overkill]

Code	Smells	– Divergent	Change

21What	could	be	some	issue	here	with	respect	to	instructor	class?

Divergent	Change	- Refactoring

22

Extract	class	and	put	the	functionalities	in	one	place	so	that	one	change	does	not	impact	others	

Code	Smells	– Divergent	Change

23

One	change	should	not	result	in	changes	in	”n”	other	places	within	a	class

Context: A class has a method to perform an operation which is affected by changes
happening in another method in same or different class

Problem: Impacts maintainability and results in a scenario where one needs to know
everything. Also affects the testability and understandability

Suggested Refactoring: Multiple ways
• Extract Class – Put everything that changes together into one class
• Extract method – Check if the operations that change can be wrapped into a
single method

Code	Smells	– Feature	Envy

24
One	class	depending	too	much	on	functions	from	another	class	– Envious!!	

25Move the method to the class so	that	the	single	responsibility	principle	is	also	ensured

Feature	Envy	- Refactoring

Code	Smells	– Feature	Envy

26

Method	in	a	class	is	envious	of	features	offered	by	other	classes

Context: A class has a method that needs to perform operations for which it depends
on multiple data and operations in another class(es)

Problem: Causes coupling between different classes affecting extensibility and
changeability. Testing also becomes challenging

Suggested Refactoring: Multiple ways
• Move method – moving the method to where it belongs
• Extract and move method – When only part of the method has too much
dependency

27

Code	Smells	– Speculative	Generality

Sometimes	we	over	design	and
overcomplicate	things and
speculate !!

Do	we	need	an	inheritance	at	the	point

28

Speculative	Generality	- Refactoring

Refactoring	by	Collapsing	the	hierarchy

Code	Smells	– Speculative	Generality

29

Code	created	with	speculation	that	something	will	be	required	in	feature	and	never	
implemented

Context: Classes have been built after extending classes creating inheritance
relationship but never used or features have been planned but not implemented

Problem: Unwanted complexity affecting understandability. Can lead to some
implementations in the child classes resulting in unwanted behaviour. Can be spotted
when the only use of a class is some test cases.

Suggested Refactoring: Multiple ways
• Collapse Hierarchy – Remove abstract classes not doing much
• Use Inline Class – Remove unnecessary delegation
• Remove unused parameters
• Rename methods to be in line with context

Five	Main	Categories	Of	Smells

30

• Bloaters – Too	many	things	packed,	keeps	accumulating	
(eg:	Long	Method,	primitive	obsession)

• Object Oriented Abusers	– Incorrect	use	of	OO	principle	or	even	incomplete
(eg: Conditional complexity)

• Change	Preventers	– Changing	one	causes	change	in	others
(eg: Divergent Change)

• Dispensables – Code	whose absence	won’t	make	a	difference,	but presence	could!
(eg: Speculative Generality)

• Couplers – Creates	too	much	coupling	between	classes
(eg: Feature	Envy)

Quick	Reference	Cards

31

32

Smell	Name Short	Description Suggested	Refactoring

Duplicated	Code Same	code	in	more	than	one	place Extract	Method,	pull	up	field,..

Long	Method Too	many	things	in	one	method Extract	Method,	Decompose	
conditionals,	Parameter	objects,..

Large	Class One	class	is	doing	too	much Extract	class,	extract	sub	classes.	
Extract	interface,..

Long	Parameter	List Never	ending	list	of	parameters Parameter	object,	Extract	Method,..

Divergent	Change Too	many	changes	in	one	class	for	different	
reasons

Extract	class,..

Shortgun Surgery One	change	=>	too	many	changes	 Move	Method,	Move	field,	Inline	class,..

Feature	Envy Interested	in	methods	of	another	class Extract	Method,	Move	Method

Data	Clumps Same	data	items	together	in	many	places Extract	Class,	Parameter	Object,	..

Primitive	Obsession Using	too	many	primitive	data	types Extract	class,	Introduce	parameter	
Object,..

Switch	Statements Complex	switch	statements,	conditionals,.. Replace	with	explicit	method,	Replace	
conditional	with	polymorphism,..

Parallel	Inheritance	hierarchies Requiring	parallel	subclasses	creation Move	Method	and	Move	field,..

33

Smell	Name Short	Description Refactoring

Lazy	Class Not	doing	much,	exists	there! Collapse	hierarchy,..

Speculative	Generality No	use	in	the	current	context	than	test Inline	class,	Collapse	hierarchy,..

Temporary	Field Having	instance	variables	not	used	much Extract	class	for	unused	variables,..

Message	Chains Ask	to	one	object	which	leads	to	next… Hide	Delegate,	extract	method	and	
move	method,..

Middle	Man Lots	of	delegations	happening Remove	Middle	Man,	Inline	Method,	
Replace	delegate	with	inheritance,..

Inappropriate	Hierarchy Too	much	private	information	shared	
between	classes	

Extract	class,	hide	delegate,	Extract	
class,	..

Alternative	Classes	different	
Interface

Two	classes	having	similar	methods
Using	different	interface

Move	method,	extract	superclass,..

Incomplete	Library	Class Modifying	library	class	can	be	impossible Introduce	local	extension,	foreign	
method,..

Data	Class Classes	with	just	some	data	fields Move	method,	Extract	method,..

Refused	Bequest Subclasses	don’t	need	everything Push	down	method,	Push	down	field,..

Comments Too	much	of	comments	is	also	bad Rename	method,	Extract	method,..

Refactoring	- Best	Practices

34

• Understand code well before refactoring
• What you think might be a problemmay not be a problem!

• Create tests and ensure the tests work just like before or even better

• Keep refactoring small and commit often – Take small steps, test and repeat

• The scope of refactoring needs to be defined clearly
• Sometimes it can end in a loop
• To do notes can be always useful

• It always helps when there are more eyes [Also for project!!]

Refactoring	– Some	Tools

35

• There is no single best tool that are available – Use your intuition along with
existing tools

• IDEs provide a lot of support – Refactor menu (In IntelliJ IDEA)

• SonarLint – Like spellchecker for code, detects smells, checks for any possible
issues (available for IDE’s like IntelliJ, Eclipse, etc.)

• SonarQube – It’s a server, given a repo it finds the list of code smells

ChatGPT-3	for	refactoring	– Just	a	try!

36

Feel	free	to	use	but	with

Can	some	metrics	be	used	to	
aid	refactoring?	

37

Code	Complexity

38

The ratio of time spent reading versus writing is well over 10 to 1
--Robert C Martin

• Code over time has tendency to accumulate complexity

• Greater or larger functionality should not have direct impact on code complexity

• Unnecessary complexity affects maintainability, time to market, understandability
and testability

How to manage it? – Start measuring it!!

Definition	from: Norman Fenton,	Software	Measurement:	A	Necessary	Scientific	Basis,	IEEE	TSE,	March	1994

What	is	measurement?

39

Measurement is defined as the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them according to
clearly defined rules

Definition	from:	Norman	Fenton,	Software	Measurement:	A	Necessary	Scientific	Basis,	IEEE	TSE,	March	1994

What	is	measurement?

40

• Entity: can be an Object (person) or event (journey)

• Attribute: Feature of property of entity (height, blood pressure, etc.)

• Two types of measurement:
• Direct measurement: measurement of attribute
• Indirect measurement: Measurement of attribute involves measurement of
some other attribute (eg: BMI)

• Uses of measurement – Assessment or Prediction

Measurement	In	terms of Software

41

• Carried out throughout the software development process

• Measurements can be performed at different levels
• Completed Product (reliability, performance, etc.)
• Development Process (time, man hours, etc.)
• Source Code (lines of code, cyclomatic complexity, etc.)

• Source code metrics focus on measuring the source code of a system
• Allows to measure complexity of code
• Improve quality of code and thereby overall software

• Used for lot of applications (defect prediction, fault localizations, refactoring,
testing, etc.)

Commonly	Used	Source Code	Metrics

42

• Lines of Code (LOC)
• Easiest but effective indicator of complexity
• Small modules have low defect rates as opposed to large ones

• Cyclomatic Complexity
• Developed by Thomas McCabe, 1976
• Allows to measure the complexity with respect to control flow of the code

• Halstead Software Science Metrics
• Developed by Halstead, 1977
• Measures complexity in terms of the amount of information in source code

• There are also object oriented metrics (Chidamber and Kemerer 1994,
Li and Henry 1993)

Cyclomatic	Complexity	

43

• Count of the number of linearly independent paths in a program

• Has a big impact on testing – test cases needs to cover the different paths

• Uses the control flow graph, G of the given program – Approach based on graph theory

• V(G) = e – n + p

• e = Number of edges
• n = Number of nodes
• p = Connected components

Cyclomatic	Complexity	- Simple Example

44

Complexity	=	4	– 5	+	2*1
=	1

Cyclomatic	Complexity	- Another Example

45

Complexity	=	8	– 8	+	2*1
=	2

Halstead	Software	Science	Metrics

46

• Considers program as a collection of tokens

• Tokens: Operators or operands

• The metrics makes use of the occurrence of operators and operands in a program to
reason about complexity

n1 -> number of distinct operators (+, -, *, while, for, (), {}, function calls, etc.)
n2 -> number of distinct operands (variables, method names, etc.)
N1 -> total number of occurrence of operators
N2 -> total number of occurrence of operands

• The above observations are combined to provide different metrics

Halstead	Software	Science	Metrics

47

• Vocabulary, n = n1 + n2
• Program length N = N1 + N2
• Volume, V = Nlog2 (n)
….

Operators (+, *, =, double, int,
final, return, {, }, (,)), n1 = 11

Operands (calculateTotalCost, item1, item2, sum, tax, number1, number 2, totalCost) = 8

N1 - (1, 1, 3, 3, 3, 1, 1,1,1,1,1) = 17 n = 19, N = 28, V = 28log(19) = 35.80

N2 – (1, 1, 1, 2, 2, 1, 1, 2) = 11

Six	OO	Metrics	– Chidamber and	Kemerer

48

• Weighted	Methods	per	Class	
• Depth	of	Inheritance	Tree	
• Number	of	Children	of	a	Class	
• Coupling	Between	Object	Classes	
• Response	for	a	Class
• Lack	of	Cohesion	on	Methods

Image	source:	medium,	google	images

Thank	You

Email:	karthik.vaidhyanathan@iiit.ac.in
Web:	https://karthikvaidhyanathan.com
Twitter:	@karthi_ishere

Course	website:	karthikv1392.github.io/cs6401_se

mailto:karthik.vaidhyanathan@iiit.ac.in
https://karthikvaidhyanathan.com/
karthikv1392.github.io/cs6401_se

